Mathematical Nomenclature

Roman Letters

a	Amplitude of wave-like disturbance
A	Cross-sectional area
A	Atomic weight
b	Thickness
B_a^2	Geometric buckling
$B_g^2 \\ B_m^2$	Material buckling
c	Speed of sound
c_p	Specific heat of the coolant
C, C_1, C_2, C_R	Constants
C^*, C^{**}	Constants
C_f	Friction coefficient
C_i	Concentration of precursor i
d	Diameter
D	Neutron diffusion coefficient
D_h	Hydraulic diameter of coolant channel
E	Neutron kinetic energy
E'	Neutron energy prior to scattering
f	Frequency
g	Acceleration due to gravity
h, h^*	Heat transfer coefficients
H	Height
H_E	Extrapolated height
Hm	Haberman-Morton number, normally $g\mu^4/\rho S^3$
j	Total volumetric flux
j_N	Volumetric flux of component N
$J_j \ J_j^* \ k$	Angle-integrated angular neutron current density vector
J_i^*	Angular neutron current density vector
k	Multiplication factor
k_{∞}	Multiplication factor in the absence of leakage

k Thermal conductivity \mathcal{K} Frictional constants

l Typical dimension of a reactor

 $\begin{array}{ll} \ell & & \text{Typical dimension} \\ \ell & & \text{Mean free path} \end{array}$

 ℓ_a Mean free path for absorption ℓ_f Mean free path for fission ℓ_s Mean free path for scattering ℓ_s Neutron diffusion length, $(D/\Sigma_a)^{\frac{1}{2}}$

 \mathcal{L} Latent heat of vaporization

 \dot{m} Mass flow rate

m Index denoting a core material

M Number of different core materials denoted by m = 1 to M

Ma Square root of the Martinelli parameter

n Integer

n(E)dE Number of neutrons with energies between E and E + dE

Number of neutrons or nuclei per unit volume

 N_f Number of fuel rods

 \mathcal{N} Number of atoms per unit volume N^* Site density, number per unit area

Nu Nusselt number, hD_h/k_L

 $\begin{array}{ccc} p & & \text{Pressure} \\ p^T & & \text{Total pressure} \end{array}$

 $\begin{array}{ccc} P & & \text{Power} \\ \mathcal{P} & & \text{Perimeter} \end{array}$

 $(1 - P_F)$ Fraction of fast neutrons that are absorbed in ^{238}U $(1 - P_T)$ Fraction of thermal neutrons that are absorbed in ^{238}U

Pr Prandtl number

 \dot{q} Heat flux per unit surface area

Q Rate of heat production per unit length of fuel rod

 R_R Reflector outer radius R_{RE} Extrapolated reflector radius

s Coordinate measured in the direction of flow

 $S(x_i, t, E)$ Rate of production of neutrons of energy, E, per unit volume.

 \mathcal{S} Surface tension

t Time

 $\begin{array}{ll} T & \text{Temperature} \\ u, U & \text{Velocity} \end{array}$

 $ar{u}$ Neutron velocity u_i Fluid velocity vector

 u_N Fluid velocity of component N

V Volume

 $\begin{array}{ll} \dot{V} & \text{Volume flow rate} \\ x,y,z & \text{Cartesian coordinates} \\ x_i & \text{Position vector} \end{array}$

 x_N Mass fraction of component N

 $egin{array}{ll} \mathcal{X} & & {
m Mass~quality} \\ z & & {
m Elevation} \end{array}$

Greek Letters

 α Volume fraction

 α_L Thermal diffusivity of liquid

 α_{mf} Ratio of moderator volume to fuel volume

 β Fractional insertion β Volume quality

 $\begin{array}{ll} \beta & \qquad & \text{Fraction of delayed neutrons} \\ \epsilon & \qquad & \text{Fast fission factor of } ^{238}U \\ \delta & \qquad & \text{Boundary layer thickness} \end{array}$

 η Efficiency

 η Thermal fission factor of ^{238}U

 θ Angular coordinate

 κ Bulk modulus of the liquid

 $\begin{array}{ll} \kappa & & \text{Wavenumber} \\ \kappa_L, \kappa_G & & \text{Shape constants} \\ \lambda & & \text{Wavelength} \end{array}$

 λ_i Decay constant of precursor i

 $(1 - \Lambda_F)$ Fraction of fast neutrons that leak out of the reactor $(1 - \Lambda_T)$ Fraction of thermal neutrons that leak out of the reactor

 ξ Time constant ξ_1, ξ_2 Constants

 μ, ν Dynamic and kinematic viscosity

 ρ Density

 ρ Reactivity, (k-1)/k

 σ Cross-section

 $\sigma_a, \sigma_f, \sigma_s$ Cross-sections for absorption, fission and scattering

 Σ Macroscopic cross-section, $N\sigma$

 Σ_{tr} Macroscopic transport cross-section, 1/3D

au Half-life

 τ_w Wall shear stress

 ϕ Angle-integrated neutron flux

 $\begin{array}{lll} \phi_L^2, \phi_G^2, \phi_{L0}^2 & & \text{Martinelli pressure gradient ratios} \\ \varphi & & \text{Angular neutron flux} \\ \omega & & \text{Radian frequency} \\ \omega_a & & \text{Acoustic mode radian frequency} \\ \omega_m & & \text{Manometer radian frequency} \\ \Omega_j & & \text{Unit direction vector} \end{array}$

Subscripts

On any variable, Q :		
Q_o	Initial value, upstream value or reservoir value	
Q_1, Q_2	Values at inlet and discharge	
Q_a	Pertaining to absorption	
Q_b	Bulk value	
Q_c	Critical values and values at the critical point	
Q_d	Detachment value	
Q_e	Effective value or exit value	
Q_e	Equilibrium value or value on the saturated liquid/vapor line	
Q_i	Components of vector Q	
Q_f	Pertaining to fission or a fuel pellet	
Q_s	Pertaining to scattering	
Q_w	Value at the wall	
Q_A,Q_B	Pertaining to general phases or components, A and B	
Q_B	Pertaining to the bubble	
Q_C	Pertaining to the continuous phase or component, C	
Q_C	Critical value	
Q_C	Pertaining to the coolant or cladding	
Q_{CI}	Pertaining to the inlet coolant	
Q_{CS}	Pertaining to the inner cladding surface	
Q_D	Pertaining to the disperse phase or component, D	
Q_E	Equilibrium value	
Q_F	Pertaining to fast neutrons	
Q_{FS}	Pertaining to the fuel pellet surface	
Q_G	Pertaining to the gas phase or component	
Q_L	Pertaining to the liquid phase or component	
Q_M	Mean or maximum value	
Q_N	Nominal conditions or pertaining to nuclei	
Q_N	Pertaining to a general phase or component, N	
Q_R	Pertaining to the reflector	
Q_S	Pertaining to the surface	
Q_T	Pertaining to thermal neutrons	
Q_V	Pertaining to the vapor	
Q_{∞}	Pertaining to conditions far away	

Superscripts and other qualifiers

On any variable	e, Q:
$ar{Q}$	Mean value of Q
\dot{Q}	Time derivative of Q
δQ	Small change in Q
ΔQ	Difference in Q values
Q^m	Pertaining to the material component, m