Mathematical Nomenclature ### Roman Letters | a | Amplitude of wave-like disturbance | |--------------------|---| | A | Cross-sectional area | | A | Atomic weight | | b | Thickness | | B_a^2 | Geometric buckling | | $B_g^2 \\ B_m^2$ | Material buckling | | c | Speed of sound | | c_p | Specific heat of the coolant | | C, C_1, C_2, C_R | Constants | | C^*, C^{**} | Constants | | C_f | Friction coefficient | | C_i | Concentration of precursor i | | d | Diameter | | D | Neutron diffusion coefficient | | D_h | Hydraulic diameter of coolant channel | | E | Neutron kinetic energy | | E' | Neutron energy prior to scattering | | f | Frequency | | g | Acceleration due to gravity | | h, h^* | Heat transfer coefficients | | H | Height | | H_E | Extrapolated height | | Hm | Haberman-Morton number, normally $g\mu^4/\rho S^3$ | | j | Total volumetric flux | | j_N | Volumetric flux of component N | | $J_j \ J_j^* \ k$ | Angle-integrated angular neutron current density vector | | J_i^* | Angular neutron current density vector | | k | Multiplication factor | | k_{∞} | Multiplication factor in the absence of leakage | | | | k Thermal conductivity \mathcal{K} Frictional constants l Typical dimension of a reactor $\begin{array}{ll} \ell & & \text{Typical dimension} \\ \ell & & \text{Mean free path} \end{array}$ ℓ_a Mean free path for absorption ℓ_f Mean free path for fission ℓ_s Mean free path for scattering ℓ_s Neutron diffusion length, $(D/\Sigma_a)^{\frac{1}{2}}$ \mathcal{L} Latent heat of vaporization \dot{m} Mass flow rate m Index denoting a core material M Number of different core materials denoted by m = 1 to M Ma Square root of the Martinelli parameter n Integer n(E)dE Number of neutrons with energies between E and E + dE Number of neutrons or nuclei per unit volume N_f Number of fuel rods \mathcal{N} Number of atoms per unit volume N^* Site density, number per unit area Nu Nusselt number, hD_h/k_L $\begin{array}{ccc} p & & \text{Pressure} \\ p^T & & \text{Total pressure} \end{array}$ $\begin{array}{ccc} P & & \text{Power} \\ \mathcal{P} & & \text{Perimeter} \end{array}$ $(1 - P_F)$ Fraction of fast neutrons that are absorbed in ^{238}U $(1 - P_T)$ Fraction of thermal neutrons that are absorbed in ^{238}U Pr Prandtl number \dot{q} Heat flux per unit surface area Q Rate of heat production per unit length of fuel rod R_R Reflector outer radius R_{RE} Extrapolated reflector radius s Coordinate measured in the direction of flow $S(x_i, t, E)$ Rate of production of neutrons of energy, E, per unit volume. \mathcal{S} Surface tension t Time $\begin{array}{ll} T & \text{Temperature} \\ u, U & \text{Velocity} \end{array}$ $ar{u}$ Neutron velocity u_i Fluid velocity vector u_N Fluid velocity of component N V Volume $\begin{array}{ll} \dot{V} & \text{Volume flow rate} \\ x,y,z & \text{Cartesian coordinates} \\ x_i & \text{Position vector} \end{array}$ x_N Mass fraction of component N $egin{array}{ll} \mathcal{X} & & { m Mass~quality} \\ z & & { m Elevation} \end{array}$ #### **Greek Letters** α Volume fraction α_L Thermal diffusivity of liquid α_{mf} Ratio of moderator volume to fuel volume β Fractional insertion β Volume quality $\begin{array}{ll} \beta & \qquad & \text{Fraction of delayed neutrons} \\ \epsilon & \qquad & \text{Fast fission factor of } ^{238}U \\ \delta & \qquad & \text{Boundary layer thickness} \end{array}$ η Efficiency η Thermal fission factor of ^{238}U θ Angular coordinate κ Bulk modulus of the liquid $\begin{array}{ll} \kappa & & \text{Wavenumber} \\ \kappa_L, \kappa_G & & \text{Shape constants} \\ \lambda & & \text{Wavelength} \end{array}$ λ_i Decay constant of precursor i $(1 - \Lambda_F)$ Fraction of fast neutrons that leak out of the reactor $(1 - \Lambda_T)$ Fraction of thermal neutrons that leak out of the reactor ξ Time constant ξ_1, ξ_2 Constants μ, ν Dynamic and kinematic viscosity ρ Density ρ Reactivity, (k-1)/k σ Cross-section $\sigma_a, \sigma_f, \sigma_s$ Cross-sections for absorption, fission and scattering Σ Macroscopic cross-section, $N\sigma$ Σ_{tr} Macroscopic transport cross-section, 1/3D au Half-life τ_w Wall shear stress ϕ Angle-integrated neutron flux $\begin{array}{lll} \phi_L^2, \phi_G^2, \phi_{L0}^2 & & \text{Martinelli pressure gradient ratios} \\ \varphi & & \text{Angular neutron flux} \\ \omega & & \text{Radian frequency} \\ \omega_a & & \text{Acoustic mode radian frequency} \\ \omega_m & & \text{Manometer radian frequency} \\ \Omega_j & & \text{Unit direction vector} \end{array}$ ## Subscripts | On any variable, Q : | | | |------------------------|---|--| | Q_o | Initial value, upstream value or reservoir value | | | Q_1, Q_2 | Values at inlet and discharge | | | Q_a | Pertaining to absorption | | | Q_b | Bulk value | | | Q_c | Critical values and values at the critical point | | | Q_d | Detachment value | | | Q_e | Effective value or exit value | | | Q_e | Equilibrium value or value on the saturated liquid/vapor line | | | Q_i | Components of vector Q | | | Q_f | Pertaining to fission or a fuel pellet | | | Q_s | Pertaining to scattering | | | Q_w | Value at the wall | | | Q_A,Q_B | Pertaining to general phases or components, A and B | | | Q_B | Pertaining to the bubble | | | Q_C | Pertaining to the continuous phase or component, C | | | Q_C | Critical value | | | Q_C | Pertaining to the coolant or cladding | | | Q_{CI} | Pertaining to the inlet coolant | | | Q_{CS} | Pertaining to the inner cladding surface | | | Q_D | Pertaining to the disperse phase or component, D | | | Q_E | Equilibrium value | | | Q_F | Pertaining to fast neutrons | | | Q_{FS} | Pertaining to the fuel pellet surface | | | Q_G | Pertaining to the gas phase or component | | | Q_L | Pertaining to the liquid phase or component | | | Q_M | Mean or maximum value | | | Q_N | Nominal conditions or pertaining to nuclei | | | Q_N | Pertaining to a general phase or component, N | | | Q_R | Pertaining to the reflector | | | Q_S | Pertaining to the surface | | | Q_T | Pertaining to thermal neutrons | | | Q_V | Pertaining to the vapor | | | Q_{∞} | Pertaining to conditions far away | | | | | | ## Superscripts and other qualifiers | On any variable | e, Q: | |-----------------|---| | $ar{Q}$ | Mean value of Q | | \dot{Q} | Time derivative of Q | | δQ | Small change in Q | | ΔQ | Difference in Q values | | Q^m | Pertaining to the material component, m |