6.4.2 Homogeneous Vaporization

Homogeneous vaporization is identified as vaporization in which the principal
source of the latent heat supply to the interface is the liquid itself rather than
some nearby heat source. A possible model could be a simplified version of the
equations governing the dynamics of a simple spherical bubble of radius, R(t).
The reader who seeks greater detail is referred to the presentation in Brennen
(1995) that includes many of the lesser features omitted here. Lord Rayleigh
(1917) first derived the equation governing the radius, R(¢), of a spherical va-
por/gas bubble in a liquid of density, pr,, when the pressure inside the bubble
is pp(t), the pressure far away in the liquid is ps (t), and the surface tension is
S, namely:
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The pressure in the bubble, pg(t), may be comprised of a component due to
any non-condensible gas present as well as the vapor pressure of the surrounding
liquid at the prevailing temperature in the bubble, Tp(t). The first component,
that due to any non-condensible gas, is important but will not be central to the
current presentation. On the other hand the vapor pressure, and, in particular,
the prevailing temperature in the bubble play a key role in the phenomena that
are manifest.

In any liquid volume that is mostly at a temperature close to its triple point,
the vapor density is so small that only a very small mass of liquid on the surface
of the bubble needs to evaporate in order to supply the increase in bubble
volume associated with the bubble growth. Moreover, that small mass of liquid
means that only a small supply of heat to the interface is needed to effect the
evaporation. And, in turn, that small heat flux only creates a small thermal
boundary layer on the bubble surface so that the temperature in the bubble,
Tg(t), is only very slightly depressed below the prevailing temperature in the
bulk of the liquid, Ts.

The converse of this is a liquid that is mostly at a higher temperature, so
that the density of the vapor is such that a significant mass of liquid must
be vaporized at the bubble surface in order to provide the volume needed for
the bubble growth. This implies a substantial heat flux to the interface in
order to provide the latent heat for that evaporation; and that heat flux, in
turn, usually causes a significant reduction in the temperature of the bubble
contents, Tg(t) (see below for an exception to this consequence). It follows that
the vapor pressure in the bubble decreases so that the pressure difference driving
the bubble growth, namely pp(t) — poo, decreases and, therefore, according
to equation 1, the rate of bubble growth decreases. This effect of the liquid
temperature in depressing the rate of bubble growth is called the thermal effect
on bubble growth and it can cause quite a dramatic difference in the resulting
bubble dynamics. Perhaps this is most dramatically recognized in the bubble
growth in water at normal temperatures. Bubble growth at room temperatures
(that are close to the triple point of water) are most frequently observed as
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cavitation (see Brennen 1995), a phenomenon in which the growth (and the
subsequent collapse) of bubbles is extremely explosive and violent. On the
other hand, bubble growth in a pot of boiling water on the stove at 100°C is
substantially inhibited by thermal effects and is therefore much less explosive,
much less violent.

These effects can be quantified using the following analyses. First, in the
case of no thermal effect, the temperature of the bubble contents will be close
to the liquid temperature and therefore the bubble pressure will be roughly con-
stant (neglecting the effect of any non-condensible gas). Then, if the pressures
are assumed constant and the surface tension is neglected, equation 1 can be
integrated to yield
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where the integration constant is absorbed into the origin of t. This result
implies explosive bubble growth, with a volume increasing like ¢3; it is the kind
of bubble growth characteristic of cavitation (Brennen 1995).

For contrast, consider the thermally-inhibited growth characteristic of boil-
ing in which the growth is controlled by the rate at which heat can diffuse
through an interfacial thermal boundary layer to provide the latent heat of va-
porization. The rate of volume growth of the bubble, 47 R2dR/dt, requires a
mass rate of evaporation equal to 47 R?(dR/dt)/py where py is the vapor den-
sity in the bubble. To evaporate this mass requires a rate of heat supply to the

interface equal to
4mR*(dR/dt)/(Lpv) (3)

where L is the latent heat of evaporation. This heat must diffuse through the
thermal boundary layer that builds up in the liquid on the bubble surface and
causes the bubble temperature, T, to fall below the liquid temperature outside
of the boundary layer, T,. It is this temperature difference, (T, — T), that
drives heat to the bubble surface at a rate given approximately by
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where kp, is the thermal conductivity of the liquid and § is the thickness of the
thermal boundary layer. For growth that begins at time ¢ = 0 this thickness
will be given approximately by
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where a7, is the thermal diffusivity of the liquid and the thinning of the boundary
layer as the bubble grows has been neglected. Furthermore, since Ty is the
temperature of the interface it should be roughly equal to the vapor temperature
at the bubble pressure, pg, and using the Clausius-Clapeyron relation (Brennen
2005):
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Equating the expressions 3 and 4 and using the expressions 5 and 6 the following
bubble growth rate is obtained:
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This rate of growth is much slower than given by the expression 2 and is char-
acteristic of boiling in water at normal pressures.

To summarize, the above analyses (given in much more detail in Brennen
1995) lead, naturally, to two technologically important multiphase phenomena,
namely cavitation and boiling. The essential difference is that bubble growth
(and collapse) in boiling is inhibited by limitations on the heat transfer at the
interface whereas bubble growth (and collapse) in cavitation is not limited by
heat transfer but only by the inertia of the surrounding liquid. Cavitation
is therefore an explosive (and implosive) process that is far more violent and
damaging than the corresponding bubble dynamics of boiling.



