
3.6.3 Steady State One-Speed Diffusion Theory

The most elementary application of diffusion theory is to the steady state oper-
ation of a reactor in which the neutron flux is neither increasing or decreasing
in time. Then, with the time-derivative term set equal to zero, the one-speed
diffusion equation 1, section 3.6.2, becomes:

−D �2 φ = S − Σaφ (1)

assuming that the diffusion coefficient, D, is uniform throughout the reactor.
Here the left-hand side is the flux of neutrons out of the control volume per
unit volume. Thus, in steady state, this must be equal to the right-hand side,
the excess of the rate of neutron production over the rate of neutron absorption
per unit volume. This excess is a basic property of the fuel and other material
properties of the reactor, in other words a material property as defined in section
2.10. Furthermore, by definition this excess must be proportional to (k∞ − 1)
(not (k − 1) since the loss to the surroundings is represented by the left hand
side of equation 1). Consequently it follows that the appropriate relation for
the source term is

S = k∞Σaφ (2)

so that, using the relation 2, section 3.6.2, the one-speed diffusion equation,
equation 1, can be written as

�2 φ +
(k∞ − 1)

L2
φ = 0 (3)

The material parameter (k∞ − 1)/L2 is represented by B2
m and, as indicated in

section 2.10, is called the material buckling:

B2
m =

(k∞ − 1)Σa

D
=

(k∞ − 1)
L2

(4)

where (Bm)−1 has the dimensions of length. Thus the diffusion equation 3,
section 3.6.3 that applies to the steady state operation of the reactor is written
as

�2 φ + B2
mφ = 0 (5)

Equation 5 (or 3) is Helmholtz’ equation. It has convenient solutions by sep-
aration of variables in all the simple coordinate systems. Later detailed eigen-
solutions to equation 5 will be examined for various reactor geometries. These
solutions demonstrate that, in any particular reactor geometry, solutions that
satisfy the necessary boundary conditions only exist for specific values (eigen-
values) of the parameter B2

m. These specific values are called the geometric
buckling and are represented by B2

g ; as described in section 2.10 the values of
B2

g are only functions of the geometry of the reactor and not of its neutronic
parameters. It follows that steady state critical solutions only exist when

B2
m = B2

g (6)



and this defines the conditions for steady state criticality in the reactor. More-
over it follows that supercritical and subcritical conditions will be defined by
the inequalities

Subcritical condition: B2
m < B2

g (7)

Supercritical condition: B2
m > B2

g (8)

since, in the former case, the production of neutrons is inadequate to maintain
criticality and, in the latter, it is in excess of that required.

As a footnote, the multiplication factor, k, in the finite reactor can be related
to the geometric buckling as follows. From equation 1, section 2.3.1, k may be
evaluated as

k =
Rate of neutron production

Sum of rates of neutron absorption and escape
(9)

and, in the diffusion equation solution, the rate of escape to the surroundings
is represented by −D �2 φ and therefore by DB2

gφ. The corresponding rate of
production is given by Dk∞φ/L2 and the rate of neutron absorption by Dφ/L2.
Substituting these expressions into the equation 9 it is observed that in steady
state operation

k =
Dk∞φ/L2

(Dφ/L2) + DB2
gφ

=
k∞

(1 + B2
gL2)

(10)


