3.6.3 Steady State One-Speed Diffusion Theory

The most elementary application of diffusion theory is to the steady state oper-
ation of a reactor in which the neutron flux is neither increasing or decreasing
in time. Then, with the time-derivative term set equal to zero, the one-speed
diffusion equation 1, section 3.6.2, becomes:

~Dv? ¢=5—3u¢ (1)

assuming that the diffusion coefficient, D, is uniform throughout the reactor.
Here the left-hand side is the flux of neutrons out of the control volume per
unit volume. Thus, in steady state, this must be equal to the right-hand side,
the excess of the rate of neutron production over the rate of neutron absorption
per unit volume. This excess is a basic property of the fuel and other material
properties of the reactor, in other words a material property as defined in section
2.10. Furthermore, by definition this excess must be proportional to (koo — 1)
(not (k — 1) since the loss to the surroundings is represented by the left hand
side of equation 1). Consequently it follows that the appropriate relation for
the source term is

S = kooXad (2)

so that, using the relation 2, section 3.6.2, the one-speed diffusion equation,
equation 1, can be written as

(koo — 1)

= =0 (3)

v o+

The material parameter (ko — 1)/L? is represented by B2, and, as indicated in
section 2.10, is called the material buckling:
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where (B,,)"! has the dimensions of length. Thus the diffusion equation 3,
section 3.6.3 that applies to the steady state operation of the reactor is written
as
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Equation 5 (or 3) is Helmholtz’ equation. It has convenient solutions by sep-
aration of variables in all the simple coordinate systems. Later detailed eigen-
solutions to equation 5 will be examined for various reactor geometries. These
solutions demonstrate that, in any particular reactor geometry, solutions that
satisfy the necessary boundary conditions only exist for specific values (eigen-
values) of the parameter B2,. These specific values are called the geometric
buckling and are represented by Bg; as described in section 2.10 the values of
Bg are only functions of the geometry of the reactor and not of its neutronic
parameters. It follows that steady state critical solutions only exist when
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and this defines the conditions for steady state criticality in the reactor. More-
over it follows that supercritical and subcritical conditions will be defined by
the inequalities

Suberitical condition: B;, < B? (7)

Supercritical condition: Bp, > B (8)

since, in the former case, the production of neutrons is inadequate to maintain
criticality and, in the latter, it is in excess of that required.

As a footnote, the multiplication factor, k, in the finite reactor can be related
to the geometric buckling as follows. From equation 1, section 2.3.1, kK may be
evaluated as

Rate of neutron production

9)

Sum of rates of neutron absorption and escape

and, in the diffusion equation solution, the rate of escape to the surroundings
is represented by —D 7 ¢ and therefore by DB} ¢. The corresponding rate of
production is given by Dk..¢/L? and the rate of neutron absorption by D¢/L?.
Substituting these expressions into the equation 9 it is observed that in steady
state operation
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