
3.5 Neutron transport theory

The first simplification of neutron transport theory is to assume that the range
of neutron energies can be discretized into a small number of energy ranges
(sometimes, as has been described in the preceding section, the even more radical
assumption is made that all neutrons have the same energy). Then the heart of
neutron transport theory is a neutron continuity equation known as the neutron
transport equation that simply represents the neutron gains and losses for an
arbitrary control volume, V , within the reactor for each of the ranges of neutron
energies being considered. In evaluating this neutron balance for each of the
energy ranges it is necessary to account for:

[A] The rate of increase of those neutrons within the volume V .

[B] The rate of appearance of those neutrons in V as a result of flux through
the surface of the volume V .

[C] The loss of those neutrons as a result of absorption (and as a result of
scattering to an energy level outside of the entire range of discretized
energies).

[D] The rate of appearance of those neutrons that, as a result of a scattering
interaction, now have energies of the magnitude being evaluated.

[E] The rate of production of those neutrons in V , most importantly by fission.

These alphabetical labels will be retained when each of these individual terms
is considered in the analysis that follows.

The second simplification, mentioned earlier, recognizes that the angular
variations in the neutron flux are rarely of first order importance. Hence non-
isotropic details can be laid aside and the neutron flux can be integrated over
the angular orientation, Ωj, as described in equations 4 and 5 of section 3.2.
When this integration is performed on the neutron transport equation in order to
extract an equation for the integrated neutron flux, φ(xi, t, E), the result takes
the following form (Glasstone and Sesonske 1981, Duderstadt and Hamilton
1976):
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This is known as the neutron continuity equation. The five terms each represent
a contribution to the population (per unit volume) of neutrons of energy E at
the location xi and the time t; specifically:

[A] The first term is the rate of increase of neutrons in that unit volume.

[B] The second term is the flux of neutrons out of that unit volume.

[C] The third term is the rate of loss of neutrons due to absorption.



[D] The fourth term is the rate of increase of neutrons of energy E due to
scattering where the energy before the scattering interaction was E′. Con-
sequently an integration over all possible previous energies, E′, must be
performed.

[E] The fifth term is the rate of production of neutrons of energy E within the
unit volume due to fission, S(xi, t, E).

Consequently the following nomenclature pertains in equation 1: φ(xi, t, E) and
Jj(xi, t, E) are the angle-integrated flux and current density as defined by equa-
tions 4 and 5 of section 3.2, ū represents the magnitude of the neutron velocity
(assumed isotropic), Σa(xi, E) is the macroscopic cross-section at location xi

for collisions in which neutrons of energy, E, are absorbed, Σs(E′ → E) is the
macroscopic cross-section for scattering of neutrons of energy E′ to energy E,
and S(xi, t, E) is the rate of production in a unit volume at xi and t of neutrons
of energy E.

Assuming that the macroscopic cross-sections and the source term are given,
equation 1 is the equation that determines the population of neutrons for each
energy level E as a function of position xi and time t. Ideally this equation
should be solved for the neutron flux, φ(xi, t, E). However, there remains a
problem in that the equation involves two unknown functions, φ(xi, t, E) and
Jj(xi, t, E), a problem that was further complicated by the integration over the
angle. Specifically, whereas ϕ(xi, t, E, Ωj) and J∗

j (xi, t, E, Ωj) are simply related
by equation 3 of section 3.2, the functions, φ(xi, t, E) and Jj(xi, t, E), defined
respectively by equations 4 and 5 of section 3.2, are not so easily related.

To proceed with a solution, another relation between φ(xi, t, E) and Jj(xi, t, E)
must be found. One simple way forward is to heuristically argue that in many
transport processes (for example the conduction of heat), the concentration (in
this case φ) and the flux (in this case Jj) are simply connected by a relation
known as Fick’s law in which the flux is proportional to the gradient of the
concentration, the factor of proportionality being a diffusion coefficient. This
assumption or approximation is made here by heuristically declaring that
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where D is a diffusion coefficient that may be a function of position. This
diffusive process could be viewed as the effective consequence of neutrons un-
dergoing multiple scattering interactions just as heat diffusion is the effective
consequence of molecules undergoing multiple interactions. One of the mod-
ern computational approaches to neutron transport known as the Monte Carlo
method (see section 3.11) utilizes this general consequence.

Fick’s law will be the model that will be the focus here. However, it is
valuable to point out that Fick’s law for neutrons can also be derived from the
basic conservation laws in the following way. Returning to the neutron con-
tinuity principle, one can propose an expansion for the neutron flux, ϕ, that
includes the angle-integrated average used above plus a perturbation term that



is linear in the angle Ωj. Assuming that this second term is small (that the
flux is only weakly dependent on the angle), one can then establish the equa-
tion for this linear perturbation term that emerges from the neutron continuity
principle. Making some further assumptions (neglect of the time dependent
term, assumption of isotropic source term), the result that emerges from this
perturbation analysis is:
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where Σtr is called the macroscopic transport cross-section and is given by Σtr =
Σa +Σs−μΣs where μ is the cosine of the average scattering angle. (For further
detail and a rigorous derivation of these relations the reader should consult
texts such as Glasstone and Sesonske 1981 or Duderstadt and Hamilton 1976).
Comparing equation 3 with equation 2 it can be observed that Jj and φ do,
indeed, connect via Fick’s law and that the neutron diffusion coefficient, D(xi),
is given by
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Equation 3 can then be used to substitute for Jj in equation 1 and thus generate
an equation for the single unknown function, φ(xi, t, E).

Computational methods based on the assumption of equation 2 are known
as diffusion theories and these will be the focus of the sections that follow.


