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Dynamic Transfer Functions

As in the quasistatic analyses described at the beginning of this chapter, the first step in the frequency
domain approach is to identify all the flow variables that are needed to completely define the state of the
flow at each of the nodes of the system. Typical flow variables are the pressure, p, (or total pressure,
pT ) the velocities of the phases or components, the volume fractions, and so on. To simplify matters we
count only those variables that are not related by simple algebraic expressions. Thus we do not count
both the pressure and the density of a phase that behaves barotropically, nor do we count the mixture
density, ρ, and the void fraction, α, in a mixture of two incompressible fluids. The minimum number of
variables needed to completely define the flow at all of the nodes is called the order of the system and will
be denoted by N . Then the state of the flow at any node, i, is denoted by the vector of state variables,
{qn

i }, n = 1, 2 → N . For example, in a homogeneous flow we could choose q1
i = p, q2

i = u, q3
i = α, to be

the pressure, velocity and void fraction at the node i.

The next step in a frequency domain analysis is to express all the flow variables, {qn
i }, n = 1, 2 → N , as

the sum of a mean component (denoted by an overbar) and a fluctuating component (denoted by a tilde)
at a frequency, ω. The complex fluctuating component incorporates both the amplitude and phase of the
fluctuation:

{qn(s, t)} = {q̄n(s)} + Re
{{q̃n(s, ω)}eiωt

}
(Nrl1)

for n = 1 → N where i is (−1)
1
2 and Re denotes the real part. For example

p(s, t) = p̄(s) + Re
{
p̃(s, ω)eiωt

}
(Nrl2)

ṁ(s, t) = ¯̇m(s) + Re
{

˜̇m(s, ω)eiωt
}

(Nrl3)

α(s, t) = ᾱ(s) + Re
{
α̃(s, ω)eiωt

}
(Nrl4)

Since the perturbations are assumed linear (|ũ| � ū, | ˜̇m| � ¯̇m, |q̃n| � q̄n) they can be readily super-
imposed, so a summation over many frequencies is implied in the above expressions. In general, the
perturbation quantities, {q̃n}, will be functions of the mean flow characteristics as well as position, s, and
frequency, ω.

The utilization of transfer functions in the context of fluid systems owes much to the pioneering work
of Pipes (1940). The concept is the following. If the quantities at inlet and discharge are denoted by
subscripts m = 1 and m = 2, respectively, then the transfer matrix, [T ], is defined as

{q̃n
2} = [T ] {q̃n

1} (Nrl5)

It is a square matrix of order N . For example, for an order N = 2 system in which the independent
fluctuating variables are chosen to be the total pressure, p̃T , and the mass flow rate, ˜̇m, then a convenient
transfer matrix is {

p̃T
2

˜̇m2

}
=

[
T11

T21

T12

T22

]{
p̃T

1

˜̇m1

}
(Nrl6)

In general, the transfer matrix will be a function of the frequency, ω, of the perturbations and the mean
flow conditions in the device. Given the transfer functions for each component one can then synthesize
transfer functions for the entire system using a set of simple procedures described in detail in Brennen



(1994). This allows one to proceed to a determination of whether or not a system is stable or unstable
given the boundary conditions acting upon it.

The transfer functions for many simple components are readily identified (see Brennen 1994) and are
frequently composed of impedances due to fluid friction and inertia (that primarily contribute to the real
and imaginary parts of T12 respectively) and compliances due to fluid and structural compressibility (that
primarily contribute to the imaginary part of T21). More complex components or flows have more complex
transfer functions that can often be determined only by experimental measurement. For example, the
dynamic response of pumps can be critical to the stability of many internal flow systems (Ohashi 1968,
Greitzer 1981) and consequently the transfer functions for pumps have been extensively explored (Fanelli
1972, Anderson et al. 1971, Brennen and Acosta 1976). Under stable operating conditions (see sections
(Nrc), (Nsi)) and in the absence of phase change, most pumps can be modeled with resistance, compliance
and inertance elements and they are therefore dynamically passive. However, the situation can be quite
different when phase change occurs. For example, cavitating pumps are now known to have transfer
functions that can cause instabilities in the hydraulic system of which they are a part. Note that under
cavitating conditions, the instantaneous flow rates at inlet and discharge will be different because of the
rate of change of the total volume, V , of cavitation within the pump and this leads to complex transfer
functions that are described in more detail in section (Nsi). These characteristics of cavitating pumps
give rise to a variety of important instabilities such as cavitation surge (see section (Nri)) or the Pogo
instabilities of liquid-propelled rockets (Brennen 1994).

Much less is known about the transfer functions of other devices involving phase change, for example
boiler tubes or vertical evaporators. As an example of the transfer function method, in the next section
we consider a simple homogeneous multiphase flow.


