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Bubbly Flow Model for Cavitating Inducer Dynamics

It is also valuable to consider the results of figures 4 to 7 of Section (Nrq) in the context of an analytical
model for the dynamics of cavitating pumps (Brennen 1978). We present here a brief physical description of
that model, the essence of which is depicted schematically in figure 1, which shows a developed, cylindrical
surface within the inducer. The cavitation is modeled as a bubbly mixture which extends over a fraction,
ε, of the length, c, of each blade passage before collapsing at a point where the pressure has risen to a value
which causes collapse. The mean void fraction of the bubbly mixture is denoted by α0. Thus far we have

Figure 1: Schematic of the bubbly flow model for the dynamics of cavitating pumps (adapted from Brennen 1978).

described a flow which is nominally steady. We must now consider perturbing both the pressure and the
flow rate at inlet, since the relation between these perturbations, and those at discharge, determine the
transfer function. Pressure perturbations at inlet will cause pressure waves to travel through the bubbly
mixture and this part of the process is modeled using a mixture compressibility parameter, K, to determine
that wave speed. On the other hand, fluctuations in the inlet flow rate produce fluctuations in the angle
of incidence which cause fluctuations in the rate of production of cavitation at inlet. These disturbances
would then propagate down the blade passage as kinematic or concentration waves which travel at the mean
mixture velocity. This process is modeled by a factor of proportionality, M , which relates the fluctuation
in the angle of incidence to the fluctuations in the void fraction. Neither of the parameters, K or M ,
can be readily estimated analytically; they are, however, the two key features in the bubbly flow model.
Moreover they respectively determine the cavitation compliance and the mass flow gain factor, two of the
most important factors in the transfer function insofar as the prediction of instability is concerned.

The theory yields the following expressions for A111, A112, A121 and A122 at small dimensionless frequencies
(Brennen 1978, 1982):
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(Nrt3)

where ζ = �ZR/RT 1 where � is the axial length of the inducer, and ZR is the number of blades. Evaluation
of the transfer function elements can be effected by noting that the experimental observations suggest



Figure 2: Transfer functions for Impellers VI and IV at φ1 = 0.07 calculated from the bubbly flow model using K = 1.3 and
M = 0.8 (adapted from Brennen et al. 1982).

ε ≈ 0.02/σ. Consequently, the Anij characteristics from equations (Nrt3) can be plotted against cavita-
tion number. Typical results are shown in figures 4 to 7 of Section(Nrq) for various choices of the two
undetermined parameters K and M . The inertance, A112, which is shown in figure 4 of Section (Nrq), is
independent of K and M . The calculated value of the inertance for these impellers is about 9.2; the actual
value may be somewhat larger because of three-dimensional geometric effects that were not included in
the calculation (Brennen et al. 1982). The parameter M only occurs in A122, and it appears from figure
6 of Section (Nrq) as though values of this parameter in the range 0.8 → 0.95 provide the best agreement
with the data. Also, a value of K ≈ 1.3 seems to generate a good match with the data of figures 5, 6 and
7 of Section(Nrq).

Finally, since K = 1.3 and M = 0.8 seem appropriate values for these impellers, we reproduce in figure
2 the complete theoretical transfer functions for various cavitation numbers. These should be directly
compared with the transfer functions of figure 3 of Section (Nrq). Note that the general features of the
transfer functions, and their variation with cavitation number, are reproduced by the model. The most
notable discrepancy is in the real part of TP21; this parameter is, however, usually rather unimportant
in determining the stability of a hydraulic system. Most important from the point of view of stability
predictions, the cavitation compliance and mass flow gain factor components of the transfer function are
satisfactorily modeled.


