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Single Droplet Combustion

Figure 1: Schematic of single droplet combustion indicating the radial distributions of fuel/vapor mass fraction, xV , oxidant
mass fraction, xO, and combustion products mass fraction.

For very small droplets of a volatile fuel, droplet evaporation is completed early in the heating process and
the subsequent combustion process is unchanged by the fact that the fuel began in droplet form. On the
other hand for larger droplets or less volatile fuels, droplet evaporation will be a controlling process during
combustion. Consequently, analysis of the combustion of a single droplet begins with the single droplet
evaporation discussed in the preceding section. Then single droplet combustion consists of the outward
diffusion of fuel vapor from the droplet surface and the inward diffusion of oxygen (or other oxidant) from
the far field, with the two reacting in a flame front at a certain radius from the droplet. It is usually
adequate to assume that this combustion occurs instantaneously in a thin flame front at a specific radius,
rflame, as indicated in figure 1. As in the last section, a steady state process will be assumed in which the
mass rates of consumption of fuel and oxidant in the flame are denoted by ṁV C and ṁOC respectively. For
combustion stoichiometry we therefore have

ṁV C = νṁOC (Noh1)

where ν is the mass-based stoichiometric coefficient for complete combustion. Moreover the rate of heat
release due to combustion will be QṁV C where Q is the combustion heat release per unit mass of fuel.
Assuming the mass diffusivities for the fuel and oxidant and the thermal diffusivity (k/ρcp) are all the
same (a Lewis number of unity) and denoted by D, the thermal and mass conservation equations for this
process can then be written as:

ṁV
dT

dr
=

d

dr

(
4πr2ρD

dT

dr

)
+ 4πr2QṁV C
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where xO is the mass fraction of oxidant.



Using equation (Noh1) to eliminate the reaction rate terms these become

ṁV
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Appropriate boundary conditions on these relations are (1) the droplet surface heat flux condition (Nog6),
(2) zero droplet surface flux of non-fuel gases from equations (Nog1) and (Nog2), (3) zero oxidant flux at
the droplet surface, (4) zero oxidant mass fraction at the droplet surface (5) temperature at the droplet
surface, Tr=R, (6) known temperature far from the flame, Tr=∞, (7) zero fuel/vapor mass fraction far from
the flame, (xV )r=∞ = 0, and (8) a known oxidant mass fraction far from the flame, (xO)∞. Using these
conditions equations (Noh5), (Noh6) and (Noh7) may be integrated twice to obtain:
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and evaluating these expressions at the droplet surface leads to:
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ṁV

4πρDR
= ln

{
1 + ν(xO)r=∞
1 − (xV )r=R

}
(Noh13)

and consequently the unknown surface conditions, Tr=R and (xV )r=R may be obtained from the relations

1 + ν(xO)r=∞
1 − (xV )r=R

=
cp(Tr=∞ − Tr=R) + L + νQ(xO)r=∞

L

=
cp(Tr=∞ − Tr=R) + L−Q

L−Q(1 − (xV )r=R)
(Noh14)

Having solved for these surface conditions, the evaporation rate, ṁV , would follow from any one of equations
(Noh11) to (Noh13). However a simple, approximate expression for ṁV follows from equation (Noh12)
since the term cp(Tr=∞ − Tr=R) is generally small compared with Q(xV )r=R. Then
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The position of the flame front, r = rflame, follows from equation (Noh13) by setting xV = xO = 0:
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Figure 2: Droplet radius, R, and the ratio of the flame radius to the droplet radius, rflame/R, for a burning octane droplet
in a 12.5% O2, 87.5% N2, 0.15atm environment. Adapted from Law (1982).

Figure 3: Theoretical and experimental burning rates, −d(R2)/dt (in cm2/s), of various paraffin hydrocarbon droplets
(R = 550µm) in a Tr=∞ = 2530◦K environment with various mass fractions of oxygen, (xO)r=∞ , as shown. Adapted from
Faeth and Lazar (1971).

As one might expect, the radius of the flame front increases rapidly at small oxygen concentrations,
(xO)∞, since this oxygen is quickly consumed. However, the second expression demonstrates that rflame/R
is primarily a function of Q/L; indeed for small values of (xO)r=∞ it follows that rflame/R ≈ Q/L. We
discuss the consequences of this in the next section.

Detailed reviews of the corresponding experimental data on single droplet combustion can be found in nu-
merous texts and review articles including those listed above. Here we include just two sets of experimental
results. Figure 2 exemplifies the data on the time history of the droplet radius, R, and the ratio of the
flame radius to the droplet radius, rflame/R. Note that after a small initial transient, R2 decreases quite
linearly with time as explicitly predicted by equation (Nog10) and implicitly contained in the combustion
analysis. The slope, −d(R2)/dt, is termed the burning rate and examples of the comparison between the
theoretical and experimental burning rates are included in figure 3. The flame front location is also shown
in figure 2; note that rflame/R is reasonably constant despite the fivefold shrinkage of the droplet.

Further refinements of this simple analysis can also be found in the texts mentioned previously. A few of
the assumptions that require further analysis include whether or not the assumed steady state is pertinent,
whether relative motion of the droplets through the gas convectively enhances the heat and mass transfer



processes, the role of turbulence in modifying the heat and mass transfer processes in the gas, whether
the chemistry can be modeled by a simple flame front, the complexity introduced by mixtures of liquids
of different volatilities, and whether all the diffusivities can be assumed to be similar.


