An Internet Book on Fluid Dynamics

Flow around a Sphere at High Reynolds Number

For steady flows about a sphere in which dU; /dt = dV; /dt = dW;/dt = 0, it is convenient to use a coordinate
system, x;, fixed in the particle as well as polar coordinates (r,6) and velocities u,, ug as defined in figure
1.

Then equations (Neal) and (Nea2) become
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The Stokes streamfunction, 1, is defined to satisfy continuity automatically:
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and the inviscid potential flow solution is
Wr? D
Y =— " sin?0 — = sin 0 (Nebb)
2 T
2D
u, = =W cos — —-cost (Neb6)
r
. D
ug = +Wsing — —sinf (Neb7)
r

Figure 1: Notation for a spherical particle.



Figure 2: Smoke visualization of the nominally steady flows (from left to right) past a sphere showing, at the top, laminar
separation at Re = 2.8 x 10° and, on the bottom, turbulent separation at Re = 3.9 x 10°. Photographs by F.N.M.Brown,
reproduced with the permission of the University of Notre Dame.
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where, because of the boundary condition (u, )=z = 0, it follows that D = —W R3/2. In potential flow one
may also define a velocity potential, ¢, such that u; = d¢/0z;. The classic problem with such solutions is
the fact that the drag is zero, a circumstance termed D’Alembert’s paradox. The flow is symmetric about
the x93 plane through the origin and there is no wake.

The real viscous flows around a sphere at large Reynolds numbers, Re = 2W R/ve > 1, are well docu-
mented. In the range from about 10 to 3 x 10°, laminar boundary layer separation occurs at 6 = 84°
and a large wake is formed behind the sphere (see figure 2). Close to the sphere the near-wake is laminar;
further downstream transition and turbulence occurring in the shear layers spreads to generate a turbulent
far-wake. As the Reynolds number increases the shear layer transition moves forward until, quite abruptly,
the turbulent shear layer reattaches to the body, resulting in a major change in the final position of sep-
aration (6 = 120°) and in the form of the turbulent wake (figure 2). Associated with this change in flow
pattern is a dramatic decrease in the drag coefficient, C'p (defined as the drag force on the body in the
negative x; direction divided by %ch27TR2), from a value of about 0.5 in the laminar separation regime
to a value of about 0.2 in the turbulent separation regime (figure 3). At values of Re less than about 10°
the flow becomes quite unsteady with periodic shedding of vortices from the sphere.
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Figure 3: Drag coefficient on a sphere as a function of Reynolds number. Dashed curves indicate the drag crisis regime in
which the drag is very sensitive to other factors such as the free stream turbulence.



