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Kinematic Wave Analysis

Consider the most basic model of two-component pipe flow (components A and B) in which the relative
motion is non-negligible. We shall assume a pipe of uniform cross-section. In the absence of phase change
the continuity equations become

∂αA

∂t
+

∂jA

∂s
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∂αB

∂t
+

∂jB

∂s
= 0 (Nsb1)

For convenience we set α = αA = 1−αB. Then, using the standard notation of equations (Nrl1) to (Nrl4),
we expand α, jA and jB in terms of their mean values (denoted by an overbar) and harmonic perturbations
(denoted by the tilde) at a frequency ω in the form used in expressions (Nrl1). The solution for the mean
flow is simply

d(j̄A + j̄B)

ds
=

dj̄

ds
= 0 (Nsb2)

and therefore j̄ is a constant. Moreover, the following equations for the perturbations emerge:

∂j̃A

∂s
+ iωα̃ = 0 ;

∂j̃B

∂s
− iωα̃ = 0 (Nsb3)

Now consider the additional information that is necessary in order to determine the dispersion equation
and therefore the different modes of wave propagation that can occur in this flow. First, we note that

jA = αj + jAB ; jB = (1 − α)j − jAB (Nsb4)

and it is convenient to replace the variables, jA and jB , by j, the total volumetric flux, and jAB , the drift
flux. Substituting these expressions into equations (Nsb3), we obtain

∂j̃

∂s
= 0 ;

∂(j̄α̃ + j̃AB)

∂s
+ iωα̃ = 0 (Nsb5)

The first of these yields a uniform and constant value of j̃ that corresponds to a synchronous motion in
which the entire length of the multiphase flow in the pipe is oscillating back and forth in unison. Such
motion is not of interest here and we shall assume for the purposes of the present analysis that j̃ = 0.

The second equation (Nsb5) has more interesting implications. It represents the connection between the
two remaining fluctuating quantities, j̃AB and α̃. To proceed further it is therefore necessary to find a
second relation connecting these same quantities. It now becomes clear that, from a mathematical point of
view, there is considerable simplicity in the the Drift Flux Model (sections (Nq)), in which it is assumed that
the relative motion is governed by a simple algebraic relation connecting jAB and α, We shall utilize that
model here and assume the existence of a known, functional relation, jAB(α). Then the second equation
(Nsb5) can be written as (
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)
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where djAB/dα is evaluated at α = ᾱ and is therefore a known function of ᾱ. It follows that the dispersion
relation yields a single wave type given by the wavenumber, κ, and wave velocity, c, where

κ = − ω
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(Nsb7)



Figure 1: Kinematic wave speeds and shock speeds in a drift flux chart.

This is called a kinematic wave since its primary characteristic is the perturbation in the volume fraction
and it travels at a velocity close to the velocity of the components. Indeed, in the absence of relative
motion c → j̄ = uA = uB.

The expression (Nsb7) (and the later expression (Nse5) for the kinematic shock speed) reveal that the
propagation speed of kinematic waves (and shocks) relative to the total volumetric flux, j, can be conve-
niently displayed in a drift flux chart as illustrated in figure 1. The kinematic wave speed at a given volume
fraction is the slope of the tangent to the drift flux curve at that point (plus j). This allows a graphical
and comparative display of wave speeds that, as we shall demonstrate, is very convenient in flows that can
be modeled using the drift flux methodology.


