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Multiphase Flow Notation

The notation that will be used is close to the standard described by Wallis (1969). It has however been
slightly modified to permit more ready adoption to the Cartesian tensor form. In particular the subscripts
that can be attached to a property will consist of a group of uppercase subscripts followed by lowercase
subscripts. The lower case subscripts (i, ij, etc.) are used in the conventional manner to denote vector
or tensor components. A single uppercase subscript (N) will refer to the property of a specific phase or
component. In some contexts generic subscripts N = A, B will be used for generality. However, other
letters such as N = C (continuous phase), N = D (disperse phase), N = L (liquid), N = G (gas), N = V
(vapor) or N = S (solid) will be used for clarity in other contexts. Finally two uppercase subscripts will
imply the difference between the two properties for the two single uppercase subscripts.

Specific properties frequently used are as follows. Volumetric fluxes (volume flow per unit area) of individual
components will be denoted by jAi, jBi (i = 1, 2 or 3 in three dimensional flow). These are sometimes
referred to as superficial component velocities. The total volumetric flux, ji is then given by

ji = jAi + jBi + · · · =
∑
N

jNi (Nac1)

Mass fluxes are similarly denoted by GAi, GBi or Gi. Thus if the densities of individual components are
denoted by ρA, ρB it follows that

GAi = ρAjAi ; GBi = ρBjBi ; Gi =
∑
N

ρNjNi (Nac2)

Velocities of the specific phases are denoted by uAi, uBi or, in general, by uNi. The relative velocity between
the two phases A and B will be denoted by uABi such that

uAi − uBi = uABi (Nac3)

The volume fraction of a component or phase is denoted by αN and, in the case of two components or
phases, A and B, it follows that αB = 1 − αA. Though this is clearly a well defined property for any
finite volume in the flow, there are some substantial problems associated with assigning a value to an
infinitesimal volume or point in the flow. Provided these can be resolved, it follows that the volumetric
flux of a component, N , and its velocity are related by

jNi = αNuNi (Nac4)

and that
ji = αAuAi + αBuBi + · · · =

∑
N

αNuNi (Nac5)

Two other fractional properties are only relevant in the context of one-dimensional flows. The volumetric
quality, βN , is the ratio of the volumetric flux of the component, N , to the total volumetric flux, i.e.

βN = jN/j (Nac6)

where the index i has been dropped from jN and j because β is only used in the context of one-dimensional
flows and the jN , j refer to cross-sectionally averaged quantities.



The mass fraction, xA, of a phase or component, A, is simply given by ρAαA/ρ (see equation (Nac8) for
ρ). On the other hand the mass quality, XA, is often referred to simply as the quality and is the ratio of
the mass flux of component, A, to the total mass flux, or

XA =
GA

G
=

ρAjA∑
N

ρNjN
(Nac7)

Furthermore, when only two components or phases are present it is often redundant to use subscripts on
the volume fraction and the qualities since αA = 1−αB, βA = 1−βB and XA = 1−XB. Thus unsubscripted
quantities α, β and X will often be used in these circumstances.

It is clear that a multiphase mixture has certain mixture properties of which the most readily evaluated is
the mixture density denoted by ρ and given by

ρ =
∑
N

αNρN (Nac8)

On the other hand the specific enthalpy, h, and specific entropy, s, being defined as per unit mass rather
than per unit volume are weighted according to

ρh =
∑
N

ρNαNhN ; ρs =
∑
N

ρNαNsN (Nac9)

Other properties such as the mixture viscosity or thermal conductivity cannot be reliably obtained from
such simple weighted means.

Aside from the relative velocities between phases that were described earlier, there are two other measures
of relative motion that are frequently used. The drift velocity of a component is defined as the velocity of
that component in a frame of reference moving at a velocity equal to the total volumetric flux, ji, and is
therefore given by, uNJi, where

uNJi = uNi − ji (Nac10)

Even more frequent use will be made of the drift flux of a component which is defined as the volumetric
flux of a component in the frame of reference moving at ji. Denoted by jNJi this is given by

jNJi = jNi − αNji = αN (uNi − ji) = αNuNJi (Nac11)

It is particularly important to notice that the sum of all the drift fluxes must be zero since from equation
(Nac11) ∑

N

jNJi =
∑
N

jNi − ji

∑
N

αN = ji − ji = 0 (Nac12)

When only two phases or components, A and B, are present it follows that jAJi = −jBJi and hence it is
convenient to denote both of these drift fluxes by the vector jABi where

jABi = jAJi = −jBJi (Nac13)

Moreover it follows from (Nac11) that

jABi = αAαBuABi = αA(1 − αA)uABi (Nac14)

and hence the drift flux, jABi and the relative velocity, uABi, are simply related.



Finally, it is clear that certain basic relations follow from the above definitions and it is convenient to
identify these here for later use. First the relations between the volume and mass qualities that follow
from equations (Nac6) and (Nac7) only involve ratios of the densities of the components:

XA = βA/
∑
N

(
ρN

ρA

)
βN ; βA = XA/

∑
N

(
ρA

ρN

)
XN (Nac15)

On the other hand the relation between the volume fraction and the volume quality necessarily involves
some measure of the relative motion between the phases (or components). The following useful results for
two-phase (or two-component) one-dimensional flows can readily be obtained from (Nac11) and (Nac6)

βN = αN +
jNJ

j
; βA = αA +

jAB

j
; βB = αB − jAB

j
(Nac16)

which demonstrate the importance of the drift flux as a measure of the relative motion.


