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Sonic Speed

Consider an infinitesimal volume of a mixture consisting of a disperse phase denoted by the subscript A
and a continuous phase denoted by the subscript B. For convenience assume the initial volume to be unity.
Denote the initial densities by ρA and ρB and the initial pressure in the continuous phase by pB. Surface
tension, S, can be included by denoting the radius of the disperse phase particles by R. Then the initial
pressure in the disperse phase is pA = pB + 2S/R.

Now consider that the pressure, pA, is changed to pA + δpA where the difference δpA is infinitesimal. Any
dynamics associated with the resulting fluid motions will be ignored for the moment. It is assumed that a
new equilibrium state is achieved and that, in the process, a mass, δm, is transferred from the continuous
to the disperse phase. It follows that the new disperse and continuous phase masses are ρAαA + δm and
ρBαB − δm respectively where, of course, αB = 1 − αA. Hence the new disperse and continuous phase
volumes are respectively
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where the thermodynamic constraints QA and QB are, as yet, unspecified. Adding these together and
subtracting unity, one obtains the change in total volume, δV , and hence the sonic velocity, c, as
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If it is assumed that no disperse particles are created or destroyed, then the ratio δpA/δpB may be de-
termined by evaluating the new disperse particle size R + δR commensurate with the new disperse phase
volume and using the relation δpA = δpB − 2S
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Substituting this into equation (Nlb4) and using, for convenience, the notation
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the result can be written as
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This expression for the sonic speed, c, is incomplete in several respects. First, appropriate thermodynamic
constraints QA and QB must be identified. Second, some additional constraint is necessary to establish the



Figure 1: The sonic velocities for various suspensions of particles in water: �, frequency of 100kHz in a suspension of 1μm
Kaolin particles (Hampton 1967) (2κR = 6.6 × 10−5); �, frequency of 1MHz in a suspension of 0.5μm Kaolin particles
(Urick 1948) (2κR = 3.4 × 10−4); solid symbols, frequencies of 100kHz − 1MHz in a suspension of 0.5mm silica particles
(Atkinson and Kytömaa 1992) (2κR = 0.2− 0.6). Lines are theoretical predictions for 2κR = 0, 6.6× 10−5, 3.4× 10−4, and
2κR = 0.2− 0.6 in ascending order (from Atkinson and Kytömaa 1992).

relation δm/δpB. But before entering into a discussion of appropriate practical choices for these constraints
(see section (Nld)) several simpler versions of equation (Nlb7) should be identified.

First, in the absence of any exchange of mass between the components the result (Nlb7) reduces to
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In most practical circumstances the surface tension effect can be neglected since S � ρAc2
AR; then equation

(Nlb8) becomes
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In other words, the acoustic impedance for the mixture, namely 1/ρc2, is simply given by the average of
the acoustic impedance of the components weighted according to their volume fractions. Another popular
way of expressing equation (Nlb9) is to recognize that ρc2 is the effective bulk modulus of the mixture
and that the inverse of this effective bulk modulus is equal to an average of the inverse bulk moduli of the
components (1/ρAc2

A and 1/ρBc2
B) weighted according to their volume fractions.

Some typical experimental and theoretical data obtained by Hampton (1967), Urick (1948) and Atkinson
and Kytömaa (1992) is presented in figure 1. Each set is for a different ratio of the particle size (radius, R)
to the wavelength of the sound (given by the inverse of the wavenumber, κ). Clearly the theory described
above assumes a continuum and is therefore relevant to the limit κR → 0. The data in the figure shows
good agreement with the theory in this low frequency limit. The changes that occur at higher frequency
(larger κR) will be discussed in the next section.

Perhaps the most dramatic effects occur when one of the components is a gas (subscript G), that is much
more compressible than the other component (a liquid or solid, subscript L). In the absence of surface
tension (p = pG = pL), according to equation (Nlb9), it matters not whether the gas is the continuous



Figure 2: The sonic velocity in a bubbly air/water mixture at atmospheric pressure for k = 1.0 and 1.4. Experimental data
presented is from Karplus (1958) and Gouse and Brown (1964) for frequencies of 1 kHz (�), 0.5 kHz (�), and extrapolated
to zero frequency(�).

or the disperse phase. Denoting αG by α for convenience and assuming the gas is perfect and behaves
polytropically according to ρk

G ∝ p, equation (Nlb9) may be written as
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This is the familiar form for the sonic speed in a two-component gas/liquid or gas/solid flow. In many
applications p/ρLc2

L � 1 and hence this expression may be further simplified to
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Note however, that this approximation will not hold for small values of the gas volume fraction α.

Equation (Nlb10) and its special properties were first identified by Minnaert (1933). It clearly exhibits
one of the most remarkable features of the sonic velocity of gas/liquid or gas/solid mixtures. The sonic
velocity of the mixture can be very much smaller than that of either of its constituents. This is illustrated
in figure 2 where the speed of sound, c, in an air/water bubbly mixture is plotted against the air volume
fraction, α. Results are shown for both isothermal (k = 1) and adiabatic (k = 1.4) bubble behavior using
equation (Nlb10) or (Nlb11), the curves for these two equations being indistinguishable on the scale of the
figure. Note that sonic velocities as low as 20 m/s occur.

Also shown in figure 2 is experimental data of Karplus (1958) and Gouse and Brown (1964). Data for
frequencies of 1.0 kHz and 0.5 kHz are shown in figure 2, as well as data extrapolated to zero frequency.
The last should be compared with the low frequency analytical results presented here. Note that the data
corresponds to the isothermal theory, indicating that the heat transfer between the bubbles and the liquid
is sufficient to maintain the air in the bubbles at roughly constant temperature.

Further discussion of the acoustic characteristics of dusty gases is presented later in section (Nnf) where the
effects of relative motion between the particles and the gas are included. Also, the acoustic characteristics
of dilute bubbly mixtures are further discussed in section (Nmc) where the dynamic response of the bubbles
are included in the analysis.


