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Shock Wave Structure

Bubble dynamics do not affect the results presented thus far since the speed, u1, depends only on the
equilibrium conditions upstream and downstream. However, the existence and structure of the shock
depend on the bubble dynamic terms in equation (Nme5). That equation is more conveniently written in
terms of a radius ratio, r = R/R1, and a dimensionless coordinate, z = x/R1:
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It could also be written in terms of the void fraction, α, since
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When examined in conjunction with the expression in equation (Nme8) for u1, it is clear that the solution,
r(z) or α(z), for the structure of the shock is a function only of α1, α2, k, R1(p1 − pV )/S, and the effective
Reynolds number, u1R1/νL, where, as previously mentioned, νL should incorporate the various forms of
bubble damping.

Equation (Nmf1) can be readily integrated numerically and typical solutions are presented in figure 1 for
α1 = 0.3, k = 1.4, R1(p1 − pV )/S � 1, u1R1/νL = 100, and two downstream volume fractions, α2 = 0.1
and 0.05. These examples illustrate several important features of the structure of these shocks. First,
the initial collapse is followed by many rebounds and subsequent collapses. The decay of these nonlinear

Figure 1: The typical structure of a shock wave in a bubbly mixture is illustrated by these examples for α1 = 0.3, k = 1.4,
R1(p1 − pV )/S � 1, and u1R1/νL = 100.



Figure 2: The ratio of the ring frequency downstream of a bubbly mixture shock to the natural frequency of the bubbles far
downstream as a function of the effective damping parameter, νL/u1R1, for α1 = 0.3 and various downstream void fractions
as indicated.

oscillations is determined by the damping or u1R1/νL. Though u1R1/νL includes an effective kinematic
viscosity to incorporate other contributions to the bubble damping, the value of u1R1/νL chosen for this
example is probably smaller than would be relevant in many practical applications, in which we might
expect the decay to be even smaller. It is also valuable to identify the nature of the solution as the
damping is eliminated (u1R1/νL → ∞). In this limit the distance between collapses increases without
bound until the structure consists of one collapse followed by a downstream asymptotic approach to a void
fraction of α1 (not α2). In other words, no solution in which α → α2 exists in the absence of damping.

Another important feature in the structure of these shocks is the typical interval between the downstream
oscillations. This ringing will, in practice, result in acoustic radiation at frequencies corresponding to this
interval, and it is of importance to identify the relationship between this ring frequency and the natural
frequency of the bubbles downstream of the shock. A characteristic ring frequency, ωr , for the shock
oscillations can be defined as

ωr = 2πu1

/
Δx (Nmf3)

where Δx is the distance between the first and second bubble collapses. The natural frequency of the
bubbles far downstream of the shock, ω2, is given by (see equation (Nmc10))
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and typical values for the ratio ωr/ω2 are presented in figure 2 for α1 = 0.3, k = 1.4, R1(p1 − pV )/S � 1,
and various values of α2. Similar results were obtained for quite a wide range of values of α1. Therefore
note that the frequency ratio is primarily a function of the damping and that ring frequencies up to a factor
of 10 less than the natural frequency are to be expected with typical values of the damping in water. This
reduction in the typical frequency associated with the collective behavior of bubbles presages the natural
frequencies of bubble clouds, that are discussed in the next section.

While the focus in the preceding two sections has been on normal shock waves, the analysis can be gener-
alized to cover oblique shocks. Figure 3 is a photograph taken in a supersonic bubbly tunnel (Eddington



Figure 3: Supersonic bubbly flow past a 20◦ half-angle wedge at a Mach number of 4. Flow is from left to right. Photograph
taken in supersonic bubbly flow tunnel (Eddington 1967) and reproduced with permission.

1967) and shows a Mach 4 flow past a 20◦ half-angle wedge. The oblique bow shock waves are clearly
evident and one can also detect some of the structure of the shocks.


