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Acoustics of Bubbly Mixtures

One class of phenomena in which bubble dynamics can play an important role is the acoustics of bub-
ble/liquid mixtures. When the acoustic excitation frequency approaches the natural frequency of the
bubbles, the latter no longer respond in the quasistatic manner assumed in sections (Nl), and both the
propagation speed and the acoustic attenuation are significantly altered. A review of this subject is given
by van Wijngaarden (1972) and we will include here only a summary of the key results. This class of
problems has the advantage that the magnitude of the perturbations is small so that the equations of the
preceding section can be greatly simplified by linearization. Hence the pressure, p, will be represented by
the following sum:

p = p̄ + Re
{
p̃eiωt

}
(Nmc1)

where p̄ is the mean pressure, ω is the frequency, and p̃ is the small amplitude pressure perturbation. The
response of a bubble will be similarly represented by a perturbation, ϕ, to its mean radius, Ro, such that

R = Ro

[
1 + Re

{
ϕeiωt

}]
(Nmc2)

and the linearization will neglect all terms of order ϕ2 or higher.

The literature on the acoustics of dilute bubbly mixtures contains two complementary analytical ap-
proaches. Foldy (1945) and Carstensen and Foldy (1947) applied the classical acoustical approach and
treated the problem of multiple scattering by randomly distributed point scatterers representing the bub-
bles. The medium is assumed to be very dilute (α � 1). The multiple scattering produces both coherent
and incoherent contributions. The incoherent part is beyond the scope of this text. The coherent part,
which can be represented by equation (Nmc1), was found to satisfy a wave equation and yields a dispersion
relation for the wavenumber, κ, of plane waves, that implies a phase velocity, cκ = ω/κ, given by (see van
Wijngaarden 1972)
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Here cL is the sonic speed in the liquid, co is the sonic speed arising from equation (Nlb11) when αρG �
(1 − α)ρL,

c2
o = kp̄

/
ρLα(1 − α) (Nmc4)

ωn is the natural frequency of a bubble in an infinite liquid (section (Ngj)), and δd is a dissipation coefficient
that will be discussed shortly. It follows from equation (Nmc3) that scattering from the bubbles makes
the wave propagation dispersive since cκ is a function of the frequency, ω.

As described by van Wijngaarden (1972) an alternative approach is to linearize the fluid mechanical
equations (Nmb1), (Nmb2), and (Nmb3), neglecting any terms of order ϕ2 or higher. In the case of plane
wave propagation in the direction x (velocity u) in a frame of reference relative to the mixture (so that
the mean velocity is zero), the convective terms in the Lagrangian derivatives, D/Dt, are of order ϕ2 and
the three governing equations become
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Assuming for simplicity that the liquid is incompressible (ρL = constant) and eliminating two of the
three unknown functions from these relations, one obtains the following equation for any one of the three
perturbation quantities (Q = ϕ, p̃, or ũ, the velocity perturbation):
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where αo is the mean void fraction given by αo = ηvo/(1 + ηvo). This equation governing the acoustic
perturbations is given by van Wijngaarden, though we have added the surface tension term. Since the
mean state must be in equilibrium, the mean liquid pressure, p̄, is related to pGo by

p̄ = pV + pGo − 2S

Ro
(Nmc9)

and hence the term in square brackets in equation (Nmc8) may be written in the alternate forms
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This identifies ωn, the natural frequency of a single bubble in an infinite liquid (see section (Ngj)).

Results for the propagation of a plane wave in the positive x direction are obtained by substituting q = e−iκx

in equation (Nmc8) to produce the following dispersion relation:
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Note that at the low frequencies for which one would expect quasistatic bubble behavior (ω � ωn) and
in the absence of vapor (pV = 0) and surface tension, this reduces to the sonic velocity given by equation
(Nlb11) when ρG α � ρL(1 − α). Furthermore, equation (Nmc11) may be written as
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where δd = 4νL/ωnR2
o. For the incompressible liquid assumed here this is identical to equation (Nmc3)

obtained using the Foldy multiple scattering approach (the difference in sign for the damping term results
from using i(ωt− κx) rather than i(κx − ωt) and is inconsequential).

In the above derivation, the only damping mechanism that was explicitly included was that due to viscous
effects on the radial motion of the bubbles. As Chapman and Plesset (1971) have shown, other damping
mechanisms can affect the volume oscillations of the bubble; these include the damping due to temperature
gradients caused by evaporation and condensation at the bubble surface and the radiation of acoustic energy
due to compressibility of the liquid. However, Chapman and Plesset (1971) and others have demonstrated
that, to a first approximation, all of these damping contributions can be included by defining an effective
damping, δd, or, equivalently, an effective liquid viscosity, μe = ωnR2

oδd/4.



Figure 1: Sonic speed for water with air bubbles of mean radius, Ro = 0.12mm, and a void fraction, α = 0.0002, plotted
against frequency. The experimental data of Fox, Curley, and Larson (1955) is plotted along with the theoretical curve for a
mixture with identical Ro = 0.11mm bubbles (dotted line) and with the experimental distribution of sizes (solid line). These
lines use δd = 0.5.

Figure 2: Values for the attenuation of sound waves corresponding to the sonic speed data of figure 1. The attenuation in
dB/cm is given by 8.69 Im{κ} where κ is in cm−1.


