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Stability of Disperse Mixtures

It transpires that a homogeneous, quiescent multiphase mixture may be internally unstable as a result
of gravitationally-induced relative motion. This instability was first described for fluidized beds by Jackson
(1963). It results in horizontally-oriented, vertically-propagating volume fraction waves or layers of the
disperse phase. To evaluate the stability of a uniformly dispersed two component mixture with uniform
relative velocity induced by gravity and a density difference, Jackson constructed a model consisting of the
following system of equations:

1. The number continuity equation (Nbc1) for the particles (density, ρD, and volume fraction, αD = α)
is:
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= 0 (Njm1)

where all velocities are in the vertically upward direction.

2. Volume continuity for the suspending fluid (assuming constant density, ρC, and zero mass interaction,
IN = 0)
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3. Individual phase momentum equations (Nbe5) for both the particles and the fluid assuming constant
densities and no deviatoric stress:
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4. A force interaction term of the form given by equation (Nbe7). Jackson constructs a component, F ′
Dk,

due to the relative motion of the form

F ′
D = q(α)(1 − α)(uC − uD) (Njm5)

where q is assumed to be some function of α. Note that this is consistent with a low Reynolds number
flow.

Jackson then considered solutions of these equations that involve small, linear perturbations or waves
in an otherwise homogeneous mixture. Thus the flow was decomposed into:

1. A uniform, homogeneous fluidized bed in which the mean values of uD and uC are respectively zero
and some adjustable constant. To maintain generality, we will characterize the relative motion by the
drift flux, jCD = α(1 − α)uC .

2. An unsteady linear perturbation in the velocities, pressure and volume fraction of the form exp{iκy +
(ζ − iω)t} that models waves of wavenumber, κ, and frequency, ω, traveling in the y direction with
velocity ω/κ and increasing in amplitude at a rate given by ζ.



Substituting this decomposition into the system of equations described above yields the following expression
for (ζ − iω):
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where the constants K1 through K3 are given by
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and K4 is given by

K4 = 2α − 1 +
α(1 − α)

q

dq

dα
(Njm8)

It transpires that K4 is a critical parameter in determining the stability and it, in turn, depends on how q,
the factor of proportionality in equation (Njm5), varies with α. Here we examine two possible functions,
q(α). The Carman-Kozeny equation (Nel4) for the pressure drop through a packed bed is appropriate for
slow viscous flow and leads to q ∝ α2/(1 − α)2; from equation (Njm8) this yields K4 = 2α + 1 and is an
example of low Reynolds number flow. As a representative example of higher Reynolds number flow we
take the relation (Nel8) due to Wallis (1969) and this leads to q ∝ α/(1 − α)b−1 (recall Wallis suggests
b = 3); this yields K4 = bα. We will examine both of these examples of the form of q(α).

Note that the solution (Njm6) yields the non-dimensional frequency and growth rate of waves with
wavenumber, κ, as functions of just three dimensionless variables, the volume fraction, α, the density
ratio, ρD/ρC , and the relative motion parameter, jCD/(g/κ)

1
2 , similar to a Froude number. Note also

that equation (Njm6) yields two roots for the dimensionless frequency, ωjCD/g, and growth rate, ζjCD/g.
Jackson demonstrates that the negative sign choice is an attenuated wave; consequently we focus exclusively
on the positive sign choice that represents a wave that propagates in the direction of the drift flux, jCD,
and grows exponentially with time. It is also easy to see that the growth rate tends to infinity as κ → ∞.
However, it is meaningless to consider wavelengths less than the inter-particle distance and therefore the
focus should be on waves of this order since they will predominate. Therefore, in the discussion below, it
is assumed that the κ−1 values of primary interest are of the order of the typical inter-particle distance.

Figure 1 presents typical dimensionless growth rates for various values of the parameters α, ρD/ρC ,

and jCD/(g/κ)
1
2 for both the Carman-Kozeny and Wallis expressions for K4. In all cases the growth rate

increases with the wavenumber κ, confirming the fact that the fastest growing wavelength is the smallest
that is relevant. We note, however, that a more complete linear analysis by Anderson and Jackson (1968)
(see also Homsy et al. 1980, Jackson 1985, Kytömaa 1987) that includes viscous effects yields a wavelength
that has a maximum growth rate. Figure 1 also demonstrates that the effect of void fraction is modest;
though the lines for α = 0.5 lie below those for α = 0.1 this must be weighed in conjunction with the fact
that the interparticle distance is greater in the latter case. Gas and liquid fluidized beds are typified by
ρD/ρC values of 3000 and 3 respectively; since the lines for these two cases are not far apart, the primary
difference is the much larger values of jCD in gas-fluidized beds. Everything else being equal, increasing
jCD means following a line of slope 1 in figure 1 and this implies much larger values of the growth rate in
gas-fluidized beds. This is in accord with the experimental observations.

As a postscript, it must be noted that the above analysis leaves out many effects that may be conse-
quential. As previously mentioned, the inclusion of viscous effects is important at least for lower Reynolds
number flows. At higher particle Reynolds numbers, even more complex interactions can occur as particles
encounter the wakes of other particles. For example, Fortes et al. (1987) demonstrated the complexity
of particle-particle interactions under those circumstances and Joseph (1993) provides a summary of how



Figure 1: The dimensionless growth rate ζjCD/g plotted against the parameter jCD/(g/κ)
1
2 for various values of α and

ρD/ρC and for both K4 = 2α + 1 and K4 = 3α.

the inhomogeneities or volume fraction waves evolve with such interactions. General analyses of kinematic
waves are contained in sections (Ns) and the reader is referred to that section for details.


