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Continuum Equations for Conservation of Momentum

Continuing with the development of the differential equations, the next step is to apply the momentum
principle to the elemental volume. Prior to doing so we make some minor modifications to that control
volume in order to avoid some potential difficulties. Specifically we deform the bounding surfaces so that
they never cut through disperse phase particles but everywhere are within the continuous phase. Since it
is already assumed that the dimensions of the particles are very small compared with the dimensions of the
control volume, the required modification is correspondingly small. It is possible to proceed without this
modification but several complications arise. For example, if the boundaries cut through particles, it would
then be necessary to determine what fraction of the control volume surface is acted upon by tractions within
each of the phases and to face the difficulty of determining the tractions within the particles. Moreover,
we shall later need to evaluate the interacting force between the phases within the control volume and this
is complicated by the issue of dealing with the parts of particles intersected by the boundary.

Now proceeding to the application of the momentum theorem for either the disperse (N = D) or continuous
phase (N = C), the flux of momentum of the N component in the k direction through a side perpendicular
to the i direction is ρNjNiuNk and hence the net flux of momentum (in the k direction) out of the elemental
volume is ∂(ρNαNuNiuNk)/∂xi. The rate of increase of momentum of component N in the k direction within
the elemental volume is ∂(ρNαNuNk)/∂t. Thus using the momentum conservation principle, the net force
in the k direction acting on the component N in the control volume (of unit volume), FT

Nk, must be given
by

FT
Nk =

∂

∂t
(ρNαNuNk) +

∂

∂xi

(ρNαNuNiuNk) (Nbe1)

It is more difficult to construct the forces, FT
Nk in order to complete the equations of motion. We must

include body forces acting within the control volume, the force due to the pressure and viscous stresses on
the exterior of the control volume, and, most particularly, the force that each component imposes on the
other components within the control volume.

The first contribution is that due to an external force field on the component N within the control volume.
In the case of gravitational forces, this is clearly given by

αNρNgk (Nbe2)

where gk is the component of the gravitational acceleration in the k direction (the direction of g is considered
vertically downward).

The second contribution, namely that due to the tractions on the control volume, differs for the two phases
because of the small deformation discussed above. It is zero for the disperse phase. For the continuous
phase we define the stress tensor, σCki, so that the contribution from the surface tractions to the force on
that phase is

∂σCki

∂xi
(Nbe3)

For future purposes it is also convenient to decompose σCki into a pressure, pC = p, and a deviatoric stress,
σD

Cki:
σCki = −pδki + σD

Cki (Nbe4)

where δki is the Kronecker delta such that δki = 1 for k = i and δij = 0 for k �= i.



The third contribution to FT
Nk is the force (per unit total volume) imposed on the component N by the

other components within the control volume. We write this as FNk so that the Individual Phase Momentum
Equation (IPME) becomes

∂

∂t
(ρNαNuNk) +

∂

∂xi
(ρNαNuNiuNk)

= αNρNgk + FNk − δN

{
∂p

∂xk
− ∂σD

Cki

∂xi

}
(Nbe5)

where δD = 0 for the disperse phase and δC = 1 for the continuous phase.

Thus we identify the second of the interaction terms, namely the force interaction, FNk. Note that, as in
the case of the mass interaction IN , it must follow that∑

N

FNk = 0 (Nbe6)

In disperse flows it is often useful to separate FNk into two components, one due to the pressure gradient
in the continuous phase, −αD∂p/∂xk, and the remainder, F ′

Dk, due to other effects such as the relative
motion between the phases. Then

FDk = −FCk = −αD
∂p

∂xk
+ F ′

Dk (Nbe7)

The IPME (Nbe5) are frequently used in a form in which the terms on the left hand side are expanded and
use is made of the continuity equation (Nbb2). In single phase flow this yields a Lagrangian time derivative
of the velocity on the left hand side. In the present case the use of the continuity equation results in the
appearance of the mass interaction, IN . Specifically, one obtains

ρNαN

{
∂uNk

∂t
+ uNi

∂uNk

∂xi

}

= αNρNgk + FNk − INuNk − δN

{
∂p

∂xk
− ∂σD

Cki

∂xi

}
(Nbe8)

Viewed from a Lagrangian perspective, the left hand side is the normal rate of increase of the momentum
of the component N ; the term INuNk is the rate of increase of the momentum in the component N due to
the gain of mass by that phase.

If the momentum equations (Nbe5) for each of the components are added together the resulting Combined
Phase Momentum Equation (CPME) becomes

∂

∂t

(∑
N

ρNαNuNk

)
+

∂

∂xi

(∑
N

ρNαNuNiuNk

)

= ρgk − ∂p

∂xk
+

∂σD
Cki

∂xi
(Nbe9)

Note that this equation (Nbe9) will only reduce to the equation of motion for a single phase flow in the
absence of relative motion, uCk = uDk. Note also that, in the absence of any motion (when the deviatoric
stress is zero), equation (Nbe9) yields the appropriate hydrostatic pressure gradient ∂p/∂xk = ρgk based
on the mixture density, ρ.



Another useful limit is the case of uniform and constant sedimentation of the disperse component (volume
fraction, αD = α = 1 − αC) through the continuous phase under the influence of gravity. Then equation
(Nbe5) yields

0 = αρDgk + FDk

0 =
∂σCki

∂xi
+ (1 − α)ρCgk + FCk (Nbe10)

But FDk = −FCk and, in this case, the deviatoric part of the continuous phase stress should be zero (since
the flow is a simple uniform stream) so that σCkj = −p. It follows from equation (Nbe10) that

FDk = −FCk = −αρDgk and ∂p/∂xk = ρgk (Nbe11)

or, in words, the pressure gradient is hydrostatic.

Finally, note that the equivalent one-dimensional or duct flow form of the IPME is

∂

∂t
(ρNαNuN ) +

1

A

∂

∂x

(
AρNαNu2

N

)
= −δN

{
∂p

∂x
+

Pτw

A

}
+ αNρNgx + FNx (Nbe12)

where, in the usual pipe flow notation, P (x) is the perimeter of the cross-section and τw is the wall shear
stress. In this equation, AFNx is the force imposed on the component N in the x direction by the other
components per unit length of the duct. A sum over the constituents yields the combined phase momentum
equation for duct flow, namely

∂

∂t
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N

ρNαNuN

)
+

1

A

∂

∂x

(
A
∑
N
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N

)
= −∂p

∂x
− Pτw

A
+ ρgx (Nbe13)

and, when all phases travel at the same velocity, u = uN , this reduces to

∂

∂t
(ρu) +

1

A

∂

∂x

(
Aρu2

)
= −∂p

∂x
− Pτw

A
+ ρgx (Nbe14)


