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Stability of Vapor/Gas Bubbles

Apart from the characteristic bubble growth and collapse processes discussed in the last section, it is also
important to recognize that the equilibrium condition

pV − p∞ + pGe − 2S

Re
= 0 (Nge1)

may not always represent a stable equilibrium state at R = Re with a partial pressure of gas pGe.

Consider a small perturbation in the size of the bubble from R = Re to R = Re(1 + ε) , ε � 1 and the
response resulting from the Rayleigh-Plesset equation. Care must be taken to distinguish two possible
cases:

(i) The partial pressure of the gas remains the same at pGe.

(ii) The mass of gas in the bubble and its temperature, TB, remain the same.

From a practical point of view the Case (i) perturbation is generated over a length of time sufficient to
allow adequate mass diffusion in the liquid so that the partial pressure of gas is maintained at the value
appropriate to the concentration of gas dissolved in the liquid. On the other hand, Case (ii) is considered
to take place too rapidly for significant gas diffusion. It follows that in Case (i) the gas term in the
Rayleigh-Plesset equation (Ngd2) is pGe/ρL whereas in Case (ii) it is pGeR
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Note that the right-hand side has the same sign as ε if

2S

Re
> 3nkpGe (Nge3)

and a different sign if the reverse holds. Therefore, if the above inequality holds, the left-hand side of
equation (Nge2) implies that the velocity and/or acceleration of the bubble radius has the same sign as
the perturbation, and hence the equilibrium is unstable since the resulting motion will cause the bubble to
deviate further from R = Re. On the other hand, the equilibrium is stable if npGe > 2S/3Re.

First consider Case (i) which must always be unstable since the inequality (Nge3) always holds if n = 0.
This is simply a restatement of the fact (discussed in section (Ngi)) that, if one allows time for mass
diffusion, then all bubbles will either grow or shrink indefinitely.

Case (ii) is more interesting since, in many of the practical engineering situations, pressure levels change
over a period of time that is short compared with the time required for significant gas diffusion. In this
case a bubble in stable equilibrium requires
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where mG is the mass of gas in the bubble and RG is the gas constant. Indeed for a given mass of gas
there exists a critical bubble size, Rc, where

Rc =

{
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(Nge5)



Figure 1: Stable and unstable bubble equilibrium radii as a function of the tension for various masses of gas in the bubble.
Stable and unstable conditions are separated by the dotted line. Adapted from Daily and Johnson (1956).

This critical radius was first identified by Blake (1949) and Neppiras and Noltingk (1951) and is often
referred to as the Blake critical radius. All bubbles of radius Re < Rc can exist in stable equilibrium,
whereas all bubbles of radius Re > Rc must be unstable. This critical size could be reached by decreasing
the ambient pressure from p∞ to the critical value, p∞c, where from equations (Nge5) and (Nge1) it follows
that

p∞c = pV − 4S
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which is often called the Blake threshold pressure.

The isothermal case (k = 1) is presented graphically in figure 1 where the solid lines represent equilibrium
conditions for a bubble of size Re plotted against the tension (pV − p∞) for various fixed masses of gas
in the bubble and a fixed surface tension. The critical radius for any particular mG corresponds to the
maximum in each curve. The locus of the peaks is the graph of Rc values and is shown by the dashed line
whose equation is (pV − p∞) = 4S/3Re. The region to the right of the dashed line represents unstable
equilibrium conditions. This graphical representation was used by Daily and Johnson (1956) and is useful
in visualizing the quasistatic response of a bubble when subjected to a decreasing pressure. Starting in
the fourth quadrant under conditions in which the ambient pressure p∞ > pV , and assuming the mass
of gas in the bubble is constant, the radius Re will first increase as (pV − p∞) increases. The bubble
will pass through a series of stable equilibrium states until the particular critical pressure corresponding
to the maximum is reached. Any slight decrease in p∞ below the value corresponding to this point will
result in explosive cavitation growth regardless of whether p∞ is further decreased or not. In the context
of cavitation nucleation (Brennen 1995), it is recognized that a system consisting of small bubbles in a
liquid can sustain a tension in the sense that it may be in equilibrium at liquid pressures below the vapor
pressure. Due to surface tension, the maximum tension, (pV −p∞), that such a system could sustain would
be 2S/R. However, it is clear from the above analysis that stable equilibrium conditions do not exist in
the range
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and therefore the maximum tension should be given by 4S/3R rather than 2S/R.


