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Bubble Growth by Mass Diffusion

In most of the circumstances considered in this chapter, it is assumed that the events occur too rapidly for
significant mass transfer of contaminant gas to occur between the bubble and the liquid. Thus we assumed
in section (Ngc) and elsewhere that the mass of contaminant gas in the bubble remained constant. It is
convenient to reconsider this issue at this point, for the methods of analysis of mass diffusion will clearly
be similar to those of thermal diffusion as described in section (Ngc) (see Scriven 1959). Moreover, there
are some issues that require analysis of the rate of increase or decrease of the mass of gas in the bubble.
One of the most basic issues is the fact that any and all of the gas-filled microbubbles that are present in a
subsaturated liquid (and particularly in water) should dissolve away if the ambient pressure is sufficiently
high. Henry’s law states that the partial pressure of gas, pGe, in a bubble that is in equilibrium with a
saturated concentration, c∞, of gas dissolved in the liquid will be given by

pGe = c∞He (Ngi1)

where He is Henry’s law constant for that gas and liquid combination (He decreases substantially with
temperature). Consequently, if the ambient pressure, p∞, is greater than (c∞He + pV − 2S/R), the bubble
should dissolve away completely. Experience is contrary to this theory, and microbubbles persist even
when the liquid is subjected to several atmospheres of pressure for an extended period; in most instances,
this stabilization of nuclei is caused by surface contamination.

The process of mass transfer can be analysed by noting that the concentration, c(r, t), of gas in the liquid
will be governed by a diffusion equation identical in form to equation (Ngc5),
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where D is the mass diffusivity, typically 2 × 10−5 cm2/sec for air in water at normal temperatures. As
Plesset and Prosperetti (1977) demonstrate, the typical bubble growth rates due to mass diffusion are so
slow that the convection term (the second term on the left-hand side of equation (Ngi2)) is negligible.

The simplest problem is that of a bubble of radius, R, in a liquid at a fixed ambient pressure, p∞, and gas
concentration, c∞. In the absence of inertial effects the partial pressure of gas in the bubble will be pGe

where
pGe = p∞ − pV + 2S/R (Ngi3)

and therefore the concentration of gas at the liquid interface is cs = pGe/He. Epstein and Plesset (1950)
found an approximate solution to the problem of a bubble in a liquid initially at uniform gas concentration,
c∞, at time, t = 0, that takes the form

R
dR

dt
=

D

ρG

{c∞ − cs(1 + 2S/Rp∞)}
(1 + 4S/3Rp∞)

{
1 + R(πDt)−

1
2

}
(Ngi4)

where ρG is the density of gas in the bubble and cs is the saturated concentration at the interface at the
partial pressure given by equation (Ngi3) (the vapor pressure is neglected in their analysis). The last term

in equation (Ngi4), R(πDt)−
1
2 , arises from a growing diffusion boundary layer in the liquid at the bubble

surface. This layer grows like (Dt)
1
2 . When t is large, the last term in equation (Ngi4) becomes small and

the characteristic growth is given approximately by

{R(t)}2 − {R(0)}2 ≈ 2D(c∞ − cs)t

ρG
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where, for simplicity, we have neglected surface tension.

It is instructive to evaluate the typical duration of growth (or shrinkage). From equation (Ngi5) the time
required for complete solution is tcs where

tcs ≈ ρG {R(0)}2

2D(cs − c∞)
(Ngi6)

Typical values of (cs − c∞)/ρG are 0.01 (Plesset and Prosperetti 1977). Thus, in the absence of surface
contaminant effects, a 10μm bubble should completely dissolve in about 2.5s.

Finally we note that there is an important mass diffusion effect caused by ambient pressure oscillations in
which nonlinearities can lead to bubble growth even in a subsaturated liquid. This is known as rectified
diffusion and is discussed in section (Ngl).


