Solution to Problem 250E

The Karman Momentum Integral Equation is :

$$\frac{\tau_w}{\rho} = \frac{d}{dx} \left(U^2 \delta_M \right) + \delta_D U \frac{dU}{dx}$$

where α , β and γ are the usual profile parameters, τ_w is the wall shear stress, U is the velocity exterior to the boundary layer, δ is the boundary layer thickness, ν and ρ are the kinematic viscosity and density of the fluid and x is the streamwise distance along the wall surface.

It follows that if U = Ax the boundary layer thickness, δ , will be given by

$$\frac{\nu\beta Ax}{\delta} = \frac{d}{dx} \left(\alpha \delta A^2 x^2\right) + \delta \gamma A^2 x$$
$$\frac{\nu\beta}{A\delta} = \alpha x \frac{d\delta}{dx} + \delta (2\alpha + \gamma)$$

or

$$\delta = \text{constant} = \left[\frac{\nu\beta}{A(2\alpha + \gamma)}\right]^{\frac{1}{2}}$$