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Solution to Problem 150N:

The constitutive laws for an incompressible, Newtonian fluid (dynamic viscosity, μ) when written in spher-
ical coordinates, (r, θ, φ), with velocities ur, uθ, uφ in the r, θ, φ directions become:
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Since the flow is purely radial (ur �= 0, uθ = 0 and uφ = 0), the continuity equation for an incompressible
fluid requires that
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and therefore
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or some function, f , of t. But since ur = dR/dt at r = R(t):
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Also, setting ur �= 0, uθ = 0 and uφ = 0, the stresses become
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σrθ = σθφ = σrφ = 0 (11)

But the balance of forces on a thin lamina of the bubble surface requires that
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where pG is the gas pressure inside the bubble.



Therefore the answer to the question (using dR/dt = V ) is
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where p is the pressure in the liquid at the bubble surface.

Note that in the liquid at the bubble surface, p is equal to the mean of three normal stresses.


