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Solution to Problem 150L

With the prescription of the flow in this problem, the Navier-Stokes equations become
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The note at the end of the problem provides the solution to the differential equation,
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where A and B are integration constants. In the present problem this yields
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We now apply the boundary conditions to determine the values of A and B. At r = a (the surface of the inner, stationary
cylinder) ug = 0 by the no-slip condition, so that
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Also at 7 = b (the surface of the outer, rotating cylinder) ug = Qb, where Q is the angular velocity of the outer cylinder, so
that
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Substituting these expressions for A and B into the flow solution yields
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Using this solution the first equation yields
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and integrating this yields
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where C'is an integration constant. This can be used to find the pressure difference between the surfaces of the two cylinders,

namely
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which simplifies to
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