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Solution to Problem 150E

a.) Since the flow is steady, planar, and incompressible the continuity equations is:
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Since the flow is the same at all locations, s, along the wall it follows that ∂us/∂s = 0 and therefore from this continuity
equation it follows that ∂un/∂n = 0. Consequently un is a constant independent of n. But since un = 0 at the wall it must
be zero everywhere.

The Navier-Stokes equation in the s-direction becomes
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Since the flow is the same at all s locations and since the pressure on the free surface is the same at all s locations it follows
that ∂p/∂s = 0. In addition since the flow is steady, planar, un = 0, and ∂us/∂s = 0, it follows that:
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Integrating twice with respect to n:
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The boundary conditions are the no slip condition at the plate and no shear stress at the free surface. These yield
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b.) To find the pressure acting on the plate if the atmospheric pressure is denoted by pa we write the Navier-Stokes equation
in the n-direction:
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Since the flow is steady, planar, and un = 0, this becomes:
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Therefore
p(n) = −ρgn cos θ + c3

At the surface the pressure is equal to atmospheric pressure:

p(h) = −ρgh cos θ + c3 = pA



and therefore
c3 = pA + ρgh cos θ

Thus
p(y) = pA + ρg cos θ(h − y)

and pressure acting on the plate is then:
p(0) = pA + ρgh cos θ


