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Solution to Problem 137B:

One of the most powerful tools for the solution of planar potential flows is the method of complex variables.
This is based on the so-called Cauchy-Riemann equations
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which have the following mathematical consequence. If we define a complex position vector,
z = x+iy = re? (2)

and a complex potential f = ¢+ 4t then it follows from the Cauchy-Riemann equations that any function
f(2) is necessarily a solution of Laplace’s equation

V3¢ = 0 and V% = 0 (3)

To prove this we replace the independent variables x and y by the variable z = x + 1y and its complex
conjugate zZ = x — iy so that in general f(z,%) will be a function of both z and Z. Moreover since
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If we then examine the derivative:
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because of the Cauchy-Riemann relations. Since df/0zZ = 0 it follows that f is only a function of z and
not of Z. It therefore follows that any function f(z) that satifies the Cauchy-Riemann relations, therefore
satisfies V2¢ = 0 and V% = 0 and therefore constitutes the solution to a planar potential flow.



