Problem 115D

Consider the following streamfunction, ψ , for a planar incompressible flow:

$$\psi = Ur\left(1 - \frac{r_0^2}{r^2}\right)\sin\theta$$

where U and r_0 are constants and r, θ are polar coordinates.

- (a) Find and sketch the streamline corresponding to $r = r_0$.
- (b) Find and add to your sketch the streamlines for $\theta = 0, r > r_0$ and for $\theta = \pi, r > r_0$. Note on your sketch the value of ψ along these lines and along the streamline for $r = r_0$.
- (c) Make a rough estimate of some other streamlines with $\psi > 0$ and show the form of these streamlines in your sketch.
- (d) What is the magnitude and direction of the flow for $r \gg r_0$?
- (e) Guided by your sketch, estimate what real flow might have the above streamfunction.

Note: In polar coordinates, the velocities in the r and θ directions, denoted respectively by u_r and u_{θ} , are given by

$$u_r = \frac{1}{r} \frac{\partial \psi}{\partial \theta} \quad ; \quad u_\theta = -\frac{\partial \psi}{\partial r}$$