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Cavitating Inducers

In the presence of cavitation, the transfer function for a pump or inducer will be considerably more
complicated than that of equation (Nrp2). Even at low frequencies, the values of TP11 will become different
from unity, because the head rise will change with the inlet total pressure, as manifest by the nonzero value
of d(ΔpT )/dpT

1 at a given mass flow rate, m1. Furthermore, the volume of cavitation, VC(pT
1 , m1), will vary

with both the inlet total pressure, pT
1 (or NPSH or cavitation number), and with the mass flow rate, m1

(or with angle of incidence), so that
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Brennen and Acosta (1973, 1975, 1976) identified this quasistatic or low frequency form for the transfer

Figure 1: Left: Typical transfer functions for a cavitating inducer obtained by Brennen et al. (1982) for a 10.2 cm diameter
inducer (Impeller VI) operating at 6000 rpm and a flow coefficient of φ1 = 0.07. Data is shown for four different cavitation
numbers, σ = (A) 0.37, (C) 0.10, (D) 0.069, (G) 0.052 and (H) 0.044. Real and imaginary parts are denoted by the solid and
dashed lines respectively. The quasistatic pump resistance is indicated by the arrow (adapted from Brennen et al. 1982).
Right: The determinants, DTP , of the experimental transfer functions.

function of a cavitating pump, and calculated values of the cavitation compliance, −ρL(dVC/dpT
1 )m1 and

the cavitation mass flow gain factor, −ρL(dVC/dm1)pT
1
, using the cavitating cascade solution discussed in

the Section (Mbeu) on “Partially Cavitating Cascades”. Both the upper limit of frequency at which this
quasistatic approach is valid and the form of the transfer function above this limit cannot readily be deter-
mined except by experiment. Though it was clear that experimental measurements of the dynamic transfer



functions were required, these early investigations of Brennen and Acosta did highlight the importance of
both the compliance and the mass flow gain factor in determining the stability of systems with cavitating
pumps.

Ng and Brennen (1978) and Brennen et al. (1982) conducted the first experiments to measure the complete
transfer function for cavitating inducers. Typical transfer functions are those for the 10.2 cm diameter
Impeller VI (see the section (Mbbi)), whose noncavitating steady state performance was presented in
section (Mben). Transfer matrices for that inducer are presented in figure 1 as a function of frequency (up
to 32 Hz), for a speed of 6000 rpm, a flow coefficient φ1 = 0.07 and for five different cavitation numbers
ranging from data set A that was taken under noncavitating conditions, to data set C that showed a little
cavitation, to data set H that was close to breakdown. The real and imaginary parts are represented by the
solid and dashed lines, respectively. Note, first, that, in the absence of cavitation (Case A), the transfer
function is fairly close to the anticipated form of equation (Nrp2) in which TP11 = TP22 = 1, TP21 = 0.
Also, the impedance (TP12) is comprised of an expected inertance (the imaginary part of TP12 is linear in
frequency) and a resistance (real part of −TP12) which is consistent with the quasistatic resistance from
the slope of the head rise characteristic (shown by the arrow in figure 1 at TP12RT 1/Ω = 1.07). The
resistance appears to increase with increasing frequency, a trend which is consistent with the centrifugal
pump measurements of Anderson, Blade and Stevans (1971) which were presented in section (Nrp). The
change in the resistance with frequency is not surprising since the resistance is some linear approximation
to frictional effects that are not linear with flow-rate and may be closer to quadratic with the flow rate
though, in the more general field of fluid mechanics, there are many different functional dependencies with
flow-rate such as the square-root of flow-rate.

Figure 2: Polynomial curves fitted to the experimental data of figure 1 (adapted from Brennen et al. 1982).

It is also clear from figure 1 that, as the cavitation develops, the transfer function departs significantly from
the form of equation (Nrp2). One observes that TP11 and TP22 depart from unity, and develop nonzero
imaginary parts that are fairly linear with frequency. Also TP21 becomes nonzero, and, in particular,
exhibits a compliance which clearly increases with decreasing cavitation number. All of these changes



mean that the determinant, DTP , departs from unity as the cavitation becomes more extensive as shown
in figure 1 (right). Note that DTP ≈ 1 for the non-cavitating case A, but that it progressively deviates
from unity as the cavitation increases. We can conclude that the presence of cavitation can cause a pump
to assume potentially active dynamic characteristics when it would otherwise be dynamically passive.

Polynomials of the form

TPij =
n∗∑

n=0

Anij(jω)n (Nrq2)

were fitted to the experimental transfer function data using values of n∗ of 3 or 5. To illustrate the result
of such curve fitting we include figure 2, which depicts the result of curve fitting figure 1.

Figure 3: Left: The inertance, −A112, non-dimensionalized as −A112RT1. Right: The compliance, −A121, nondimensionalized
as −A121Ω2/RT1. As functions of cavitation number for two axial inducer pumps (Impellers IV and VI) with the same
geometry but different diameters. Data for the 10.2 cm diameter Impeller VI is circled and was obtained from the data of
figure 1. The uncircled points are for the 7.58 cm diameter Impeller IV. Adapted from Brennen et al. (1982).

We now proceed to examine several of the coefficients Anij that are of particular interest (note that A011 =
A022 = 1, A021 = 0 for reasons described earlier). We begin with the inertance, −A112, which is presented
nondimensionally in figure 3 (left). Though there is significant scatter at the lower cavitation numbers, the
two different sizes of inducer pump appear to yield similar dimensionless inertances. Moreover, the data
suggest some decrease in the inertance with decreasing σ. On the other hand, the corresponding data for
the compliance, −A121, which is presented in figure 3 (right) seems roughly inversely proportional to the
cavitation number. And the same is true for both the mass flow gain factor, −A122, and the coefficient
that defines the slope of the imaginary part of TP11, A111; these are presented in figure 4. All of these data
appear to conform to the physical scaling implicit in the nondimensionalization of each of the dynamic
characteristics.

***************************************

A more complete collection of the available data on the compliance and the mass flow gain factor for
cavitating pumps is shown in figure 5 where those quantities are plotted against the cavitation number.
The data on the SSME inducers in water is extracted from figures 3 and 4 while the J2 oxidizer data was



Figure 4: Left: The mass flow gain factor, −A122, nondimensionalized as −A122Ω. Right: The characteristic, A111, nondi-
mensionalized as A111Ω. For the same circumstances as described in figure 3.

derived by Brennen and Acosta (1976) using test data and a heuristic dynamic model of the test facility.
The LE-7 test data in liquid nitrogen was obtained by Shimura (1995). The LE-7A data is the only LOX
data and was extracted from test data by Hori and Brennen (2011). All of this data is subject to significant
uncertainty though the original SSME data is probably the most reliable since it is based on measurements
of the complete dynamic transfer function. Nevertheless, with one exception, both the compliance and
mass flow gain factor data exhibit significant consistency in which both C and M are inversely proportional
to σ. The exception is the LE-7A LOX data for the mass flow gain factor; whether this discrepancy is
within the uncertainty band or an actual LOX thermal effect remains to be determined.

Figure 5: Dimensionless cavitation compliance (left) and mass flow gain factor (right) plotted against tip cavitation number
for: [a] Brennen et al. (1982) SSME 10.2cm model inducer in water (solid blue squares) [b] Brennen et al. (1982) SSME 7.6cm
model inducer in water (open blue squares) [c] Brennen (1978) bubbly flow model results (dashed blue lines) [d] Brennen &
Acosta (1976) SSME LPOTP blade cavitation prediction (dot-dash blue line) [e] Brennen & Acosta (1976) J2-Oxidizer data
(solid green circles) [f] Brennen & Acosta (1976) J2-Oxidizer blade cavitation prediction (dot-dash green line) [g] Yonezawa
et al. (2012) quasistatic CFD cascade data (solid red diamonds).



Figure 5 also includes predictions from the blade cavitation analysis of Brennen and Acosta (1976) which
has the advantage that it does not contain any empirical parameter, as such. However, it assumes that all
the cavitation is contained within a single cavity attached to each blade. Moreover the comparisons in figure
5 suggest that such a model does not yield very useful results which is not surprising when photographs
of practical inducers show that the cavitation is primarily bubbly cavitation and not blade cavitation
(Brennen 1994). Also included in figure 5 are several predictions from the bubbly flow model of Section
(Nrt) (dashed blue lines for several choices of K ′ and M ′). The predictions appear to provide a useful
benchmark for future data evaluation and comparison. Also included in figure 5 are quasistatic compliances
and mass flow gain factors recently derived by Yonezawa et al (2012) from steady CFD calculations of the
cavitating flow in linear cascades. They also performed calculations at a series of flow coefficients that
show a general trend of increasing compliance and mass flow gain factor as the flow coefficient is decreased.

Before further analysis, we digress briefly to review the non-dimensionalization of these results. Note that
the fundamental variables in equation (Nrq1) are the total pressure whose units are the [kg/ms2] and
the mass flow rate with units of [kg/s]. Therefore the resistance, −Re{T12}, has units of [m−1s−1]. The
compliance, C , is defined as C = −ρL(dVC/dpT

1 )m1 and therefore has units of [ms2]. The units of T21 are
[ms] and the mass flow gain factor, M = −ρL(dVC/dpT

1 )m1, are [s]. It is convenient to non-dimensionalize
the total pressure using 1

2
ρLU2 (where U is a blade tip velocity, at the inlet tip for pumps and the discharge

tip for turbines) and the mass flow rate using ρLUA where A is the cross-sectional area of the inlet or
discharge. Using these dimensionless variables in the dimensionless transfer matrix it follows that

• the element T21 becomes T21U/2A

• the element T22 becomes T22

• the element T12 becomes T122A/U and

• the resistance, R = −Re{T12}, becomes non-dimensionalized as 2AR/U

These are straightforward. However, complications arise because there are two different possible ways to
non-dimensionalize the frequency, ω, and both have their merits:

[A] The first possibility is to define a dimensionless frequency, ω′ = ωh/U where h is the blade tip
spacing, h = πD/Z where Z is the number of pump or turbine blades. This choice recognizes the
blade passage frequency, U/h, as the key inherent frequency of the flow. It has the property that it
ascribes a cavitation volume to each blade; hence the key difference between this choice and choice
[B] is the appearance of the number of blades, Z, in ω′. This non-dimensional frequency emerges
naturally in the blade cavitation analysis of Brennen and Acosta (1973) and in the bubbly flow model
of Section (Nrt).

[B] A second possible choice is ω′′ = ω/Ω where Ω is the radian rotation rate in radians/sec. This has the
advantage of simplicity and may be more appropriate in turbomachines that manifest a cavitation
volume that is independent of the individual blades; such might be case, for example, with a single
draft tube vortex in a turbine.

With the first non-dimensional frequency, ω′, the dimensionless compliance denoted by C ′ and the dimen-
sionless mass flow gain factor denoted by M ′ become

ω′C ′ = ωC and ω′M ′ = ωM (Nrq3)

so that
C ′ = CZΩ2/2π2D and M ′ = MZΩ/2π (Nrq4)



With this first scheme the pump and turbine compliances, C ′, are as shown in Figures 3 and 5 while the
pump mass flow gain factors, M ′, are as shown in Figures 4 and 5.

With the second non-dimensional frequency, ω′′, the dimensionless compliance, C ′′, and the dimensionless
mass flow gain factor, M ′′, become

ω′′C ′′ = ωC and ω′′M ′′ = ωM (Nrq5)

so that
C ′′ = CΩ2/2π2D and M ′′ = MΩ (Nrq6)

With this second scheme the pump and turbine compliances, C ′′, and mass flow gain factors, M ′′, are
as shown in Figure 6. It appears that the second non-dimensional frequency scheme does a better job

Figure 6: The dimensionless compliance, C ′′ (left), and mass flow gain factor, M ′′ (right), plotted versus the cavitation
number, σ, for many inducer pumps. Also plotted is data from Dorfler (2018) and Manderla et al. (2016) for Francis
turbines.

of collapsing the turbine data onto the pump data but whether this is significant or merely coincidental
remains to be seen.


