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Thermally Controlled Growth

When the first critical time is exceeded it is clear that the relative importance of the various terms in the
Rayleigh-Plesset equation, (Ngc2), will change. The most important terms become the driving term (1)
and the thermal term (2) whose magnitude is much larger than that of the inertial terms (4). Hence if the
tension (pV − p∗∞) remains constant, then the solution using the form of equation (Ngc14) for the thermal
term must have n = 1
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and the asymptotic behavior is
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Consequently, as time proceeds, the inertial, viscous, gaseous, and surface tension terms in the Rayleigh-
Plesset equation all rapidly decline in importance. In terms of the superheat, ΔT , rather than the tension
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where the group ρLcPLΔT/ρV L is termed the Jakob Number in the context of pool boiling and ΔT =
Tw − T∞, Tw being the wall temperature. We note here that this section will address only the issues
associated with bubble growth in the liquid bulk. The presence of a nearby wall (as is the case in most
boiling) causes details and complications the discussion of which is delayed until sections (Ni).

The result, equation (Ngg1) or (Ngg2), demonstrates that the rate of growth of the bubble decreases

substantially after the first critical time, tc1, is reached and that R subsequently increases like t
1
2 instead

of t. Moreover, since the thermal boundary layer also increases like (DLt)
1
2 , the Plesset-Zwick assumption

remains valid indefinitely. An example of this thermally inhibited bubble growth is including in figure 1,
which is taken from Dergarabedian (1953). We observe that the experimental data and calculations using
the Plesset-Zwick method agree quite well.

When bubble growth is caused by decompression so that p∞(t) changes substantially with time during
growth, the simple approximate solution of equation (Ngg1) no longer holds and the analysis of the unsteady
thermal boundary layer surrounding the bubble becomes considerably more complex. One must then solve

Figure 1: Experimental observations of the growth of three vapor bubbles (©, �, �) in superheated water at 103.1◦C
compared with the growth expected using the Plesset-Zwick theory (adapted from Dergarabedian 1953).



Figure 2: Data from Hewitt and Parker (1968) on the growth of a vapor bubble in liquid nitrogen (pressure/time history also
shown) and comparison with the analytical treatments by Theofanous et al. (1969), Jones and Zuber (1978), and Cha and
Henry (1981).

the diffusion equation (Ngc5), the energy equation (usually in the approximate form of equation (Ngc7))
and the Rayleigh-Plesset equation (Ngc2) simultaneously, though for the thermally controlled growth
being considered here, most of the terms in equation (Ngc2) become negligible so that the simplification,
pV (TB) = p∞(t), is usually justified. When p∞ is a constant this reduces to the problem treated by
Plesset and Zwick (1952) and later addressed by Forster and Zuber (1954) and Scriven (1959). Several
different approximate solutions to the general problem of thermally controlled bubble growth during liquid
decompression have been put forward by Theofanous et al. (1969), Jones and Zuber (1978) and Cha and
Henry (1981). All three analyses yield qualitatively similar results that also agree quite well with the
experimental data of Hewitt and Parker (1968) for bubble growth in liquid nitrogen. Figure 2 presents a
typical example of the data of Hewitt and Parker and a comparison with the three analytical treatments
mentioned above.

Several other factors can complicate and alter the dynamics of thermally controlled growth. Nonequilibrium
effects (Schrage 1953) can occur at very high evaporation rates where the liquid at the interface is no
longer in thermal equilibrium with the vapor in the bubble and these have been explored by Theofanous
et al. (1969) and Plesset and Prosperetti (1977) among others. The consensus seems to be that this
effect is insignificant except, perhaps, in some extreme circumstances. There is no clear indication in the
experiments of any appreciable departure from equilibrium.

More important are the modifications to the heat transfer mechanisms at the bubble surface that may
be caused by surface instabilities or by convective heat transfer. These are reviewed in Brennen (1995).
Shepherd and Sturtevant (1982) and Frost and Sturtevant (1986) have examined rapidly growing nucleation
bubbles near the limit of superheat and have found growth rates substantially larger than expected when
the bubble was in the thermally controlled growth phase. Photographs (see figure 3) reveal that the
surfaces of those particular bubbles are rough and irregular. The enhancement of the heat transfer caused
by this roughening is probably responsible for the larger than expected growth rates. Shepherd and
Sturtevant (1982) attribute the roughness to the development of a baroclinic interfacial instability similar



Figure 3: Typical photographs of a rapidly growing bubble in a droplet of superheated ether suspended in glycerine. The
bubble is the dark, rough mass; the droplet is clear and transparent. The photographs, which are of different events, were
taken 31, 44, and 58 µs after nucleation and the droplets are approximately 2mm in diameter. Reproduced from Frost and
Sturtevant (1986) with the permission of the authors.

to the Landau-Darrieus instablity of flame fronts. In other circumstances, Rayleigh-Taylor instability of
the interface could give rise to a similar effect (Reynolds and Berthoud 1981).


