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Pressure Differences due to Surface Tension

Figure 1: A small section of curved surface (red) with surface tension, S, and pressures, pO and pI on the outside and inside
respectively.

One common manifestation of surface tension is the difference in pressure it causes across a curved
surface. For simplicity we consider first a liquid surface which is curved in only one plane but is flat in
a direction perpendicular to that plane. A small section of such a surface is sketched in Figure 1. The
pressures in the different fluids on either side of this interface are denoted by pO (on the outside of curve)
and pI (on the inside of the curve). Now consider all the forces acting on a small section of the surface
of length, ds, and unit dimension normal to the sketch. The radius of curvature of the surface is denoted
by R as indicated so that the angle subtended at the center of curvature, dθ, is given by ds = Rdθ. Now
consider all the forces in the direction n normal to the center of the fluid element. By the result described
in static forces the net force in the outward direction due to forces near and at a fluid surface that we
will describe in this and some linked sections. pO and pI will be 2R(pI − pO) sin dθ. Opposing this will be
the components of the surface tension forces S acting on the two ends of the section of surface which yield
an inward force (in the negative n direction) equal to 2S sin dθ. Thus in equilibrium

2R(pI − pO) sin dθ = 2S sin dθ (Cm1)

or
pI − pO = S/R (Cm2)

Thus the surface tension causes a greater pressure inside the surface and the difference is the surface tension
divided by the radius of curvature (so that a flat surface yields no pressure difference). Note that it makes
no difference whether the liquid is on the outside or on the inside.

Now consider a spherical surface, specifically the spherical drop or bubble shown in Figure 2. If the
drop is cut in half as shown the force imposed by surface tension on the remaining half will be 2πRS.
Opposing that will be the pressure difference (pI − pO) acting on the projected area πR2 and therefore, in
equilibrium,

2πRS = πR2(pI − pO) (Cm3)

so that, in the case of a spherical surface,

pI − pO = 2S/R (Cm4)



Figure 2: Half of a spherical drop of radius, R, (red) with surface tension, S, and pressures, pO and pI on the outside and
inside respectively.

An appropriate way to visualize this is that, on the surface, the curvatures in each of the two perpendicular
directions contribute equally to the pressure difference caused by the surface tension. Indeed, a general
three-dimensional surface will have two principal radii of curvature, R1 and R2, and it can be shown that
the resulting pressure difference in this general case is given by

pI − pO = S
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(Cm5)

In the special case of the cylindrical surfaces, R1 = R and R2 = ∞ and in the special case of the sphere,
R1 = R2 = R.


