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System with Rigid Body Vibration

All of the preceding analysis has assumed that the structure of the hydraulic system is at rest in some
inertial coordinate system. However, there are a number of important problems in which the oscillation of
the hydraulic system itself may play a central role. For instance, one might seek to evaluate the unsteady
pressures and flow rates in a hydraulic system aboard a vehicle undergoing translational or rotational
oscillations. Examples might be oil or water pumping systems aboard a ship, or the fuel and hydraulic
systems on an aircraft. In other circumstances, the motion of the vehicle may couple with the propulsion
system dynamics to produce instabilities, as in the simplest of the Pogo instabilities of liquid propelled
rocket engines (see section (Mbfn)).

In this section we give a brief outline of how rigid body oscillations of the hydraulic system can be included
in the frequency domain methodology. For convenience we shall refer to the structure of the hydraulic
system as the “vehicle”. There are, of course, more complex problems in which the deformation of the
vehicle is important. Such problems require further refinement of the methods presented here.

In order to include the rigid body oscillation of the vehicle in the analysis, it is first necessary to define a
coordinate system, x, which is fixed in the vehicle, and a separate inertial or nonaccelerating coordinate
system, xA. The mean location of the origin of the x system is chosen to coincide with the origin of the xA

system. The oscillations of the vehicle are then described by stating that the translational and rotational
displacements of the x coordinate system in the xA system are respectively given by
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{
d̃ejωt

}
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θ̃ejωt

}
(Bngk1)

It follows that the oscillatory displacement of any vector point, x, in the vehicle is given by

Re
{

(d̃ + θ̃ × x)ejωt
}

(Bngk2)

and the oscillatory velocity of that point will be

Re
{
jω(d̃ + θ̃ × x)ejωt

}
(Bngk3)

Then, if the steady and oscillatory velocities of the flow in the hydraulic system, and relative to that
system, are given as in the previous sections by ū and ũ respectively, it follows that the oscillatory velocity
of the flow in the nonaccelerating frame, ũA, is given by

ũA = ũ + jω(d̃ + θ̃ × x) (Bngk4)

Furthermore, the acceleration of the fluid in the nonaccelerating frame, ãA, is given by

ãA = jωũ − ω2d̃ − ω2θ̃ × x + 2jωθ̃ × ū (Bngk5)

The last three terms on the right hand side are vehicle-induced accelerations of the fluid in the hydraulic
system. It follows that these accelerations will alter the difference in the total pressure between two nodes
of the hydraulic system denoted by subscripts 1 and 2. By integration one finds that the total pressure
difference, (p̃T

2 − p̃T
1 ), is related to that which would pertain in the absence of vehicle oscillation, (p̃T

2 − p̃T
1 )0,

by
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(x2 − x1) · d̃ + (x2 × x1) · θ̃
}

(Bngk6)



where x2 and x1 are the locations of the two nodes in the frame of reference of the vehicle.

The inclusion of these acceleration-induced total pressure changes is the first step in the synthesis of models
of this class of problems. Their evaluation requires the input of the location vectors, xi, for each of the

system nodes, and the values of the system displacement frequency, ω, and amplitudes, d̃ and θ̃. In an
analysis of the response of the hydraulic system, the vibration amplitudes, d̃ and θ̃, would be included as
inputs. In a stability analysis, they would be initially unknown. In the latter case, the system of equations
would need to be supplemented by those of the appropriate feedback mechanism. An example would be
a set of equations giving the unsteady thrust of an engine in terms of the fluctuating fuel supply rate
and pressure and giving the accelerations of the vehicle resulting from that fluctuating thrust. Clearly a
complete treatment of such problems would be beyond the scope of this book.


