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Properties of Transfer Matrices

Transfer matrices (and transmission matrices) have some fundamental properties that are valuable to recall
when constructing or evaluating the dynamic properties of a component or system.

We first identify a “uniform” distributed component as one in which the differential equations (for example,
equation (Bngc8)) governing the fluid motion have coefficients which are independent of position, s. Then,
for the class of systems represented by the equation (Bngc8), the matrix [F ] is independent of s. For a
system of order two, the transfer function [T ] would take the explicit form given by equations (Bngd3).

To determine another property of this class of dynamic systems, consider that the equations (Bngc8) have
been manipulated to eliminate all but one of the unknown fluctuating quantities, say q̃1. The resulting
equation will take the form

N∑
n=0

an(s)
dnq̃1

dsn
= 0 (Bngf1)

In general, the coefficients an(s), n = 0 → N , will be complex functions of the mean flow and of the
frequency. It follows that there are N independent solutions which, for all the independent fluctuating
quantities, may be expressed in the form

{q̃n} = [B(s)]{A} (Bngf2)

where [B(s)] is a matrix of complex solutions and {A} is a vector of arbitrary complex constants to be
determined from the boundary conditions. Consequently, the inlet and discharge fluctuations denoted by
subscripts 1 and 2, respectively, are given by

{q̃n
1} = [B(s1)] {A} ; {q̃n

2} = [B(s2)] {A} (Bngf3)

and therefore the transfer function
[T ] = [B(s2)] [B(s1)]

−1
(Bngf4)

Now for a uniform system, the coefficients an and the matrix [B] are independent of s. Hence the equation
(Bngf1) has a solution of the form

[B(s)] = [C ] [E] (Bngf5)

where [C ] is a known matrix of constants, and [E] is a diagonal matrix in which

Enn = ejγns (Bngf6)

where γn, n = 1 to N , are the solutions of the dispersion relation

N∑
n=0

anγ
n = 0 (Bngf7)

Note that γn are the wavenumbers for the N types of wave of frequency, ω, which can propagate through
the uniform system. In general, each of these waves has a distinct wave speed, cn, given by cn = −ω/γn.
It follows from equations (Bngf5), (Bngf6) and (Bngf4) that the transfer matrix for a uniform distributed
system must take the form

[T ] = [C ] [E∗] [C ]−1 (Bngf8)



where [E∗] is a diagonal matrix with
E∗

nn = ejγn� (Bngf9)

and � = s2 − s1.

An important diagnostic property arises from the form of the transfer matrix, (Bngf8), for a uniform
distributed system. The determinant, DT , of the transfer matrix [T ] is

DT = exp {j (γ1 + γ2 + · · · + γN ) �} (Bngf10)

Thus the value of the determinant is related to the sum of the wavenumbers of the N different waves
which can propagate through the uniform distributed system. Furthermore, if all the wavenumbers, γn,
are purely real, then

|DT | = 1 (Bngf11)

The property that the modulus of the determinant of the transfer function is unity will be termed “quasi-
reciprocity” and will be discussed further below. Note that this will only be the case in the absence of
wave damping when γn and cn are purely real.

Turning now to another property, a system is said to be “reciprocal” if, in the matrix [Z] defined by{
p̃T

1

p̃T
2

}
= [Z]

{
m̃1

−m̃2

}
(Bngf12)

the transfer impedances Z12 and Z21 are identical (see Brown 1967 for the generalization of this property
in systems of higher order). This is identical to the condition that the determinant, DT , of the transfer
matrix [T ] be unity:

DT = 1 (Bngf13)

We shall see that a number of commonly used components have transfer functions which are reciprocal. In
order to broaden the perspective we have introduced the property of “quasi-reciprocity” to signify those
components in which the modulus of the determinant is unity or

|DT | = 1 (Bngf14)

We have already noted that uniform distributed components with purely real wavenumbers are quasi-
reciprocal. Note that a uniform distributed component will only be reciprocal when the wavenumbers tend
to zero, as, for example, in incompressible flows in which the wave propagation speeds tend to infinity.

By utilizing the results of the section on combinations of transfer matrices, we can conclude that any series
or parallel combination of reciprocal components will yield a reciprocal system. Also a series combination
of quasi-reciprocal components will be quasi-reciprocal. However it is not necessarily true that a parallel
combination of quasi-reciprocal components is quasi-reciprocal.

An even more restrictive property than reciprocity is the property of “symmetry”. A “symmetric” com-
ponent is one that has identical dynamical properties when turned around so that the discharge becomes
the inlet, and the directional convention of the flow variables is reversed (Brown 1967). Then, in contrast
to the regular transfer matrix, [T ], the effective transfer matrix under these reversed circumstances is [TR]
where {

p̃T
1

−m̃1

}
= [TR]

{
p̃T

2

−m̃2

}
(Bngf15)

and, comparing this with the definition (Bngc2), we observe that

TR11 = T22/DT ; TR12 = T12/DT



TR21 = T21/DT ; TR22 = T11/DT (Bngf16)

Therefore symmetry, [T ] = [TR], requires

T11 = T22 and DT = 1 (Bngf17)

Consequently, in addition to the condition, DT = 1, required for reciprocity, symmetry requires T11 = T22.

As with the properties of reciprocity and quasi-reciprocity, it is useful to consider the property of a system
comprised of symmetric components. Note that according to the combination rules, a parallel combination
of symmetric components is symmetric, whereas a series combination may not retain this property. In this
regard symmetry is in contrast to quasi-reciprocity in which the reverse is true.

In the case of uniform distributed systems, Brown (1967) shows that symmetry requires

F11 = F22 = 0 (Bngf18)

so that the solution of the equation (Bngd4) for λ is λ = ±λ∗ where λ∗ = (F21F12)
1
2 is known as the

“propagation operator” and the transfer function (Bngd3) becomes

T11 = T22 = cosh λ∗�

T12 = ZC sinh λ∗�

T21 = Z−1
C sinhλ∗� (Bngf19)

where ZC = (F12/F21)
1
2 = (T12/T21)

1
2 is known as the “characteristic impedance”.

In addition to the above properties of transfer functions, there are also properties associated with the net
flux of fluctuation energy into the component or system. These will be elucidated after we have examined
some typical transfer functions for components of hydraulic systems.


