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Fluctuation Energy Flux

It is clearly important to be able to establish the net energy flux into or out of a hydraulic system component
(see Brennen and Braisted 1980). If the fluid is incompressible, and the order two system is characterized
by the mass flow rate, m, and the total pressure, pT , then the instantaneous energy flux through any system
node is given by mpT /ρ where the density is assumed constant. Substituting the expansions (Bnga2) and
(Bnga3) for pT and m, it is readily seen that the mean flux of energy due to the fluctuations, E, is given
by

E =
1

4ρ
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m̃¯̃pT + ¯̃mp̃T

}
(Bngh1)

where the overbar denotes a complex conjugate. Superimposed on E are fluctuations in the energy flux
whose time-average value is zero, but we shall not be concerned with those fluctuations. The mean
fluctuation energy flux, E, is of more consequence in terms, for example, of evaluating stability. It follows
that the net flux of fluctuation energy into a component from the fluid is given by
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(Bngh2)

and when the transfer function form (Bngc2) is used to write this in terms of the inlet fluctuating quantities
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(Bngh3)

where
Γ1 = T11T̄21 + T21T̄11

Γ2 = T22T̄12 + T12T̄22

Γ3 = T̄11T22 + T̄21T12 (Bngh4)

and
|Γ3|2 = |DT |2 + Γ1Γ2 (Bngh5)

Using the above relations, we can draw the following conclusions:

1. A component or system which is “conservative” (in the sense that ΔE = 0 under all circumstances,
whatever the values of p̃T

1 and m̃1) requires that

Γ1 = Γ2 = 0 , Γ3 = 1 (Bngh6)

and these in turn require not only that the system or component be “quasi-reciprocal” (|DT | = 1)
but also that

T̄11

T11
= − T̄12

T12
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T21
=
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T22
=

1

DT
(Bngh7)

Such conditions virtually never occur in real hydraulic systems, though any combination of lumped
inertances and compliances does constitute a conservative system. This can be readily demonstrated
as follows. An inertance or compliance has DT = 1, purely real T11 and T22 so that T11 = T̄11 and T22 =
T̄22, and purely imaginery T21 and T12 so that T21 = −T̄21 and T12 = −T̄12. Hence individual inertances
or compliances satisfy equations (Bngh6) and (Bngh7). Furthermore, from the section “Combinations
of Transfer Matrices”, it can readily be seen that all combination of components with purely real
T11 and T22 and purely imaginery T21 and T12 will retain the same properties. Consequently, any
combination of inertance and compliance satisfies equations (Bngh6) and (Bngh7) and is conservative.



2. A component or system will be considered “completely passive” if ΔE is positive for all possible
values of m̃1 and p̃T

1 . This implies that a net external supply of energy to the fluid is required to
maintain any steady state oscillation. To find the characteristics of the transfer function which imply
“complete passivity” the expression (Bngh3) is rewritten in the form

ΔE =
|p̃T

1 |2
4ρ

[−Γ1 − Γ2xx̄ + (1 − Γ3)x + (1 − Γ̄3)x̄
]

(Bngh8)

where x = m̃1/p̃
T
1 . It follows that the sign of ΔE is determined by the sign of the expression in the

square brackets. Moreover, if Γ2 < 0, it is readily seen that this expression has a minimum and is
positive for all x if

Γ1Γ2 > |1 − Γ3|2 (Bngh9)

which, since Γ2 < 0, implies Γ1 < 0. It follows that necessary and sufficient conditions for a component
or system to be completely passive are

Γ1 < 0 and G < 0 (Bngh10)

where
G = |1 − Γ3|2 − Γ1Γ2 = |DT |2 + 1 − 2Re{Γ3} (Bngh11)

The conditions (Bngh10) also imply Γ2 < 0. Conversely a “completely active” component or system
which always has ΔE < 0 occurs if and only if Γ1 > 0 and G < 0 which imply Γ2 > 0. These
properties are not, of course, the only possibilities. A component or system which is not completely
passive or active could be “potentially active.” That is to say, ΔE could be negative for the right
combination of m̃1 and p̃T

1 , which would, in turn, depend on the rest of the system to which the
particular component or system is attached. Since Γ1 is almost always negative, it transpires that
most components are either completely passive or potentially active, depending on the sign of the
quantity, G, which will therefore be termed the “dynamic activity”. These circumstances can be
presented graphically as shown in figure 1.

Figure 1: Schematic of the conditions for completely active, completely passive and potentially active components or systems.

In practice, of course, both the transfer function, and properties like the dynamic activity, G, will be
functions not only of frequency but also of the mean flow conditions. Hence the potential for system
instability should be evaluated by tracking the graph of G against frequency, and establishing the mean
flow conditions for which the quantity G becomes negative within the range of frequencies for which transfer
function information is available.



While the above analysis represents the most general approach to the stability of systems or components,
the results are not readily interpreted in terms of commonly employed measures of the system or component
characteristics. It is therefore instructive to consider two special subsets of the general case, not only
because of the simplicity of the results, but also because of the ubiquity of these special cases. Consider
first a system or component that discharges into a large, constant head reservoir, so that p̃T

2 = 0. It follows
from the expression (Bngh2) that

ΔE =
|m̃1|2
2ρ

Re{p̃T
1 /m̃1} (Bngh12)

Note that ΔE is always purely real and that the sign only depends on the real part of the “input impedance”

p̃T
1 /m̃1 = −T12/T11 (Bngh13)

Consequently a component or system with a constant head discharge will be dynamically stable if the
“input resistance” is positive or

Re
{−T12

/
T11

}
> 0 (Bngh14)

This relation between the net fluctuation energy flux, the input resistance, and the system stability, is
valuable because of the simplicity of its physical interpretation. In practice, the graph of input resistance
against frequency can be monitored for changes with mean flow conditions. Instabilities will arise at
frequencies for which the input resistance becomes negative.

The second special case is that in which the component or system begins with a constant head reservoir
rather than discharging into one. Then

ΔE =
|m̃2|2
2ρ
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/
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}
(Bngh15)

and the stability depends on the sign of the real part of the “discharge impedance”

−p̃T
2

/
m̃2 = −T12

/
T22 (Bngh16)

Thus a constant head inlet component or system will be stable when the “discharge resistance” is positive
or

Re
{−T12

/
T22

}
> 0 (Bngh17)

In practice, since T11 and T22 are close to unity for many components and systems, both the condition
(Bngh14) and the condition (Bngh17) reduce to the approximate condition that the system resistance,
Re{−T12}, be positive for system stability. While not always the case, this approximate condition is
frequently more convenient and more readily evaluated than the more precise conditions detailed above
and given in equations (Bngh14) and (Bngh17). Note specifically, that the system resistance can be
obtained from steady state operating characteristics; for example, in the case of a pump or turbine, it is
directly related to the slope of the head-flow characteristic and instabilities in these devices which result
from operation in a regime where the slope of the characteristic is positive and Re{−T12} is negative are
well known (Greitzer 1981) and have been described earlier (see section on “Surge”).

It is, however, important to recognize that the approximate stability criterion Re{−T12} > 0, while it may
provide a useful guideline in many circumstances, is by no means accurate in all cases. One notable and
important case in which this criterion is inaccurate is the auto-oscillation phenomenon described in the
section on “Auto-oscillation”. This is not the result of a positive slope in the head-flow characteristic,
but rather occurs where this slope is negative and is caused by cavitation-induced changes in the other
elements of the transfer function. This circumstance will be discussed further in the section on “Cavitating
Inducers”.


