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Slender body theory

The objective of slender-body theory is to take advantage of the slenderness in order to achieve sim-
plifications in obtaining approximate solutions for the flow around such bodies. The development of
low-Reynolds-number slender-body theory evolved through the work of Burgers (1938), Broersma 1196O,
and Tuck (1964); later work by Taylor (1969), Tillett (1970), Batchelor (1970a), Cox (1970), and Blake
(1974b) concentrated on construction of slender-body solutions by distributions of fundamental singulari-
ties along an axis of the body. We note that with the exception of Batchelor’s (1970a) work on arbitrary
cross-section, researchers have concentrated on bodies of circular cross-section.

Figure 1: Slender-body schematic.

In choosing axes fixed relative to a particular section of the slender body under examination (Figure 1),
we will seek the distribution of stokeslets, doublets, etc. on the axis of the body that will satisfy the
no-slip condition at points such as A on the surface of the slender body whose local radius is a. The
integrated induced velocity at such points must then be equated with the known or assumed translational
velocity of the section under consideration. The result will, in general, be a system of complicated integral
equations for the strength of the singularity distributions. The first simplification of slender-body theory
results from the observation that the velocities induced at A by singularities outside a certain near-field
will be dominated by the stokeslets in the far-field since their far-field effect (like r−1) dominates that of
the other, singularities. Thus the primary distribution is one of stokeslets along the entire axis of the body.
The boundary condition at the cross-section under consideration is satisfied by introducing a potential
doublet (or if necessary other singularities) only within the near-field. In particular the integrated effect
of singularities with a far-field decay faster than r−1 can be fairly accurately determined by terminating
the integration at some distance s = ±λ from the section under consideration where s1, s2 � λ � a, s1

and s2 being the distances to the ends of the slender body. On the other hand, the integration for the
velocity induced by the stokeslets cannot be truncated in this way and indeed yields a velocity with terms
like ln (s1s2/a

2). The reader is referred to Lighthill (1975, p.49) for the forms of the integrated induced
velocities. Note that this is another manifestation of Stokes paradox for the translation of an infinitely
long cylinder; when s1 or s2 tend to infinity, the boundary condition at the section under consideration
cannot be satisfied. We must also note that such a construction is limited to sections sufficiently far from
the ends of the slender body; Tillett (1970) has examined some of the problems associated with such “end
effects.”

The net result of these considerations is that one must seek the strength and direction of stokeslets dis-
tributed along the entire axis of the slender body plus the local distribution of higher-order singularities



that satisfies the required boundary condition at every point on the slender-body surface. A useful ap-
proximate way of implementing this was suggested by Lighthill (1975) and by Johnson and Wu (private
communication). If the local radius of curvature of the body is large compared with a, then the combined
effects of both the near- and far-field distributions may be replaced by a distribution of stokeslets alone in
the far-field regions, s > δ and s < δ. For the components of the stokeslets normal to the axis δ = a/2e1/2

whereas for the components tangential to the axis δ = ae1/2/2. This observation considerably simplifies
the algebra required in obtaining solutions for the motions of slender bodies of more complicated geometry.

The simplest solutions are those for the translation of straight slender cylinders as obtained by Tillett
(1970) and Cox (1970). Defining force coefficients as the force per unit length of the body divided by
the translational velocity, U , Cox (1970) improved on the original work of Burgers (1938) and Broersma
(1960) to show that the force coefficient for a cylinder, with length 2� and maximum radius a, moving
perpendicular to its axis was

Cn =
4πμ

ln 2�/a + C1

+ O
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]
(Bld9)

while that for motion parallel with its axis, Cs, was

Cs =
2πμ

ln 2�/a + C2
+ O
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μ
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]
(Bld10)

The value of C2 was (C1 − 1) and the value of C1 depended on the axial variation of the radius of the
cylinder. A uniform axial cylinder took a value C1 = ln 2 − (1/2) = 0.193, whereas a prolate spheroid
yielded C1 = 1/2. The latter agrees with the results of the exact solution for a spheroid, equations (Blc7)
and (Blc8); in this case the answers are more accurate than the error terms in equations (Bld9) and (Bld10)
indicate.


