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Vorticity

The vorticity, ω(x, t) or ωi(xi, t), in a fluid flow is a vector quantity equal to twice the rate of rotation of
an infinitesmal fluid element. It is simply related to the velocity vector by

ω = ∇× u (Bdd1)
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Note that just as we defined streamlines to be lines that are everywhere tangential to the velocity vector,
u, we also define vortex lines to be lines that are everywhere tangential to the vorticity vector, ω. Note also
that by virtue of the definition of vorticity, vortex lines are everywhere orthogonal to streamlines. Also
note that in planar flow the vorticity is perpendicular to the plane of the flow; in such flow it is convenient
to use ω to denote the magnitude of the vorticity and therefore
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Though it may be premature to do so, it is useful to anticipate some of the properties of vorticity even
though they will not be proven until later. We begin with a uniform stream for which ω = 0 since all
the velocity gradients are zero. It transpires that when such a flow encounters a solid object such as the

Figure 1: Boundary layer at large Reynolds numbers.

airfoil in figure 1, vorticity is created at the surface of that object since the fluid in contact with the
solid surface is at rest as a result of the no-slip condition. Consequently the fluid is inclined to roll at
the surface rather like a layer of microscopic ball bearings between two sliding surfaces. But due to the
action of the tangential stresses between fluid layers (caused by the fluid viscosity), this rotation tends to
be transmitted further outward into the fluid. Hence the vorticity is created at the solid surface due to
the no-slip condition and is then diffused outward into the fluid through the action of viscosity. Of course
those outer layers of fluid are also being carried along in the flow and therefore the vorticity tends also to
be convected along in the flow. Hence there are two transport mechanisms for vorticity, diffusion across
fluid layers by viscosity and convection in the direction of flow. The latter mechanism dominates when
a parameter called the Reynolds number, Re, is greater than unity (Re = U�/ν where U and � are the
typical velocity and dimension of the flow and ν is the kinematic viscosity of the fluid.) Then, as sketched
in Figure 1, the vorticity will be confined to a thin layer near the solid surface, a region that is called
the boundary layer. Beyond the trailing edge of the body the boundary layers form the wake behind the



body. In contrast to the flow inside the boundary layer and wake, the flow outside tends to remain free
of vorticity. Such a flow in which the vorticity is negligibly small is called an irrotational flow and is
therefore characterized by

ω = ∇(u) = 0 (Bdd4)

There are many circumstances and applications in which it is useful to solve for the details of an irrotational
flow. One such class consists of flows in which solid boundaries play a minor role, for example waves on a
deep ocean. Another class are flows at large Reynolds numbers in which the boundary layers are very thin
compared with the other dimensions of the flow. Then, as illustrated in Figure 2, a first approximation
would be to neglect the boundary layer and to solve the irrotational flow bounded by the geometry of the

Figure 2: Thin boundary layer at large Reynolds numbers.

body instead of by the geometry of the outer surfaces of the boundary layers. Since the irrotational flow
has a tangential velocity at the outer surfaces of the boundary layers, it would be inappropriate to apply
the no-slip condition to that irrotational solution. But it would be appropriate to apply the condition of
zero normal velocity. These and other details of such solutions are treated in more detail later in this text;
the present intent is simply to indicate that irrotational flow solutions do have practical value in real fluid
flows. Here we proceed to investigate some of the characteristics of irrotational flows and to develop a
number of solution methodologies and examples. To do so we first introduce the velocity potential.


