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Newton’s Law of Motion

Having established the form of the first basic conservation law (namely the conservation of mass) in the
context of fluid flow we now turn to the second basic conservation principle, namely Newton’s first law of
motion, and explore the form it takes when applied to a flowing fluid. Newton’s law states that the net
vector force, F , on a specific mass (of fluid, solid or any combination thereof) is equal to the rate of change
of momentum of that mass. It is particular important to note that this applies to a Lagrangian mass, M ,
a particular group of particles whose motion is being followed in the flow. We write this as

F =
D{Mu}

Dt
= M

Du

Dt
(Bda1)

where u is the vector fluid velocity and the time derivative, D/Dt, is the Lagrangian derivative following
the fluid (or fluid and solid). The second form on the right of the above equation follows since the mass,
M , in a Lagrangian volume does not change with time.

As in the case of the development of the equation for conservation of mass, we will develop several ap-
plications of Newton’s law using both infinitesmal and macroscopic control volumes. We begin utilizing
an infinitesmal control volume to develop differential equations that embody Newton’s law and we do
this at two levels of complexity, one which neglects viscous forces and leads to Euler’s equations and the
second which includes those viscous forces and leads to the Navier-Stokes equations. Later we utilize a
macroscopic control volume to develop the very useful momentum thereoms of fluid mechanics, tools that
are particularly useful to the engineer.

We begin by applying Newton’s law to the infinitesmal control volume dx × dy × dz shown in Figure 1
which contains a mass of fluid ρ dxdydz so that Newton’s law can be written as

Figure 1: Infinitesmal Eulerian control volume.

F = ρdxdydz
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It is useful to delineate several forms of this equation. In tensor form it may be written as

Fi

dxdydz
= ρ

Dui
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}
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where we have used the relation between the Lagrangian and Eulerian time derivatives to write the sec-
ond version. Note for future reference that Fi/dxdydz is the net force (per unit volume) acting on the
infinitesmal control volume and it remains to develop that quantity.

It is also useful to further develop the vector form of the above equations, namely

F

dxdydz
= ρ

{
∂u

∂t
+ (u .∇)u

}
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by utilizing the following vector identity:

1

2
∇(u . u) = ∇

( |u|2
2

)
= u × (∇× u) + (u . ∇)u (Bda5)

so that the vector form of Newton’s law can also be written as

F
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2

)
− u × (∇× u)

}
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It remains to evaluate the net force F acting on the control volume. This consists of a number of contri-
butions divided into two categories, body forces and surface forces. The so-called body forces such
as gravity or electromagnetic forces act on the body of fluid inside the control volume. Electromagnetic
forces are not presently included in this text and we shall include only gravity in the present development.
If the body force per unit volume has components, fi, then that contribution to Fi/dxdydz is simply fi.
If, like gravity, the body force is conservative (the energy expended in moving a mass from one location
to another is all recovered when the mass is returned to its original location) then we can define a body
force potential such that f = ∇(U) and fi = ∂U/∂xi. If, for example, we define a set of axes such that
y is vertically upward (this is a common choice and universally the case in this text) then it follows that

U = − ρgy , fy = −ρg , fx = fz = 0 (Bda7)

where g is the acceleration due to gravity. In the sections which follow the only body force that we will
include will be that due to gravity and the above expressions for U and fi will be deployed.

There are also surface forces which act on the surfaces of the control volume. Principle among theses are
the forces which the surrounding fluid is imposing on the fluid inside the control volume. Depending on the
nature of the fluid these surface forces can be quite complex. It is convenient to begin by developing the
equations in circumstances in which the surfaces forces are assumed to be simple and specifically consist
only of forces due to the pressure imposed by the surrounding fluid on the faces of the control volume.
Those forces are normal to the faces on which they act. The result will be the set of equations of motion
known as Euler’s equations. Those equations omit the tangential forces that act on the surfaces of the
control volume which are usually shear stresses caused by the viscosity of the fluid. Later in this text
we return to the control volume analysis to include these viscous forces; the resulting set of equations of
motion are called the Navier-Stokes equations.


