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Example: Pump or Turbine

The principle of a rotary pump or turbine provides a good example of the use of the angular momentum
theorem. Consider the geometry of and flow through a pump or turbine rotor as depicted in Figure 1.f

Figure 1: Cross-sectional view through the axis of a pump or turbine rotor.

The flow through a rotor rotating at a speed, Ω (in radians/sec) is visualized by developing a meridional
surface (Figure 2) that will be assumed to be an axisymmetric stream surface. On this meridional surface
the fluid velocity in a non-rotating coordinate system is denoted by v(r) (with subscripts 1 and 2 denoting
particular values at inlet and discharge) and the corresponding velocity relative to the rotating blades is
denoted by w(r). The velocities, v and w, have components vθ and wθ in the circumferential direction,
and vm and wm in the meridional direction. Axial and radial components are denoted by the subscripts
a and r. As shown in Figure 2, the flow angle β(r) is defined as the angle between the relative velocity
vector in the meridional plane and a plane perpendicular to the axis of rotation. The blade angle βb(r) is
defined as the inclination of the tangent to the blade in the meridional plane and the plane perpendicular
to the axis of rotation. If the flow is precisely parallel to the blades, β = βb. To keep the example simple
it is assumed that the blade heights, B1 and B2, are small compared with the radii RH1 and RH2 so that
the flows at inlet and discharge can be characterized by a single radius, R1 and R2, a single meridional
velocity, vM1 or vM2, and a single azimuthal velocity, vθ1 or vθ2. By continuity of mass it must follow that
the mass flow rate, Q, through the machine must be equal to

Q = 2πR1B1vM1 = 2πR2B2vM2 (Bei1)

We now use the component of the angular momentum theorem in the axial direction in order to relate
the torque, T , applied to the fluid within the rotor (and therefore the torque which the shaft applies to
the rotor and therefore the torque supplied to the shaft from outside the machine) to the fluid velocities
entering and leaving the rotor. The flow in a frame of reference rotating with the rotor is assumed to be
steady (the flow in a non-rotating frame is unsteady) and therefore if we choose a control volume which
is rotating and contains all the fluid inside the rotor and bounded by axisymmetric surfaces the first term
in the angular momentum theorem involving the rate of change of momentum within the control volume
will be zero. It remains to determine the net flux of angular momentum out of the control volume. The
fluxes of angular momentum entering and leaving the rotor are respectively

ρQR1vθ1 and ρQR2vθ2 (Bei2)



Figure 2: Developed meridional surface and velocity triangle.

and therefore by the angular momentum theorem

T = ρQ(R2vθ2 − R1vθ1) (Bei3)

Moreover, the rate of work done by the rotor on the fluid will be simply TΩ and, assuming no mechanical
losses, this would be equal to the shaft work, Ẇ , entering (or leaving) the machine. Therefore

Ẇ = ρQΩ(R2vθ2 −R1vθ1) (Bei4)

Since we also found when we considered the application of the first law of thermodynamics to a flowing,
incompressible fluid that

Q(pT
2 − pT

1 ) = TΩ = Ẇ (Bei5)

(where pT
2 and pT

1 are the total pressure at discharge and inlet) we have obtained the following relation
between the flow rate, Q and the total pressure change across the machine:

pT
2 − pT

1 =
Ẇ

Q
= ρΩ(R2vθ2 − R1vθ1) (Bei6)

Thus the performance of the machine is known once the azimuthal velocities vθ2 and vθ1 have been deter-
mined. Often we know the direction of the flow at inlet and therefore can determine vθ1 from the known



velocity v1 and the known flow angle. Sometimes the flow at discharge is nearly tangential to the blades
and therefore vθ2 can be determined from the inclination of the blades at discharge and the known velocity
v2. The details of departures from these approximations are discussed in the sections on fluid machinery.


