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Example: Duct of Arbitrary Shape

As a common and useful example consider the application of the linear momentun theorem to the duct
of arbitrary shape depicted in Figure 1. For simplicity, it is assumed that the velocity magnitude, q1, is
uniform across the inlet area, A1, where the fluid density is ρ1. Similarly, the velocity magnitude, q2, is
uniform across the outlet area, A2, where the fluid density is ρ2. The angular inclination of the outlet flow
to the inlet flow is θ. Otherwise the walls of the duct are solid.

Figure 1: Duct of arbitrary shape.

We will begin by choosing a control volume which follows the inside surface of the duct and cuts across
the inlet and outlet perpendicular to the direction of flow in those places. It then follows that the force,
F1, on this control volume in the direction of the q1 velocity is given by

F1 = −(ρ1q1A1)q1 + (ρ2q2A2)q2 cos θ (Beb1)

since the component of the outlet velocity in the q1 direction is q2 cos θ. Moreover since continuity requires
that the mass flow rate, m, is

m = ρ1q1A1 = ρ2q2A2 (Beb2)

the force in the q1 direction can be written as

F1 = m(−q1 + q2 cos θ) (Beb3)

and the force, F2, perpendicular to q1 but in the plane of q2 is

F2 = m(q2 sin θ) (Beb4)

These are the components of the sum of the forces acting on all sides of the control volume, ABCD, which,
in this manifestation, contains only fluid. This sum must include both body forces (for example that due
to gravity) and the surface forces acting on all sides of the control volume. For example they include the
force, p1A1, due to the pressure, p1, acting on the inlet AD and the force, p2A2, due to the pressure, p2,
acting on the outlet, BC, (in addition to any viscous forces on those sides) as well as all forces imposed by
the walls AB and CD on the fluid touching them.



Figure 2: Duct with alternative control volume, CV.

Superficially one might envision difficulties in evaluating the pressure and viscous shear stresses on these
walls in order to calculate these last contributions to the force. However, a simple change in the control
volume alleviates these concerns. If we choose the control volume shown in Figure 2 in which the sides of
the control volume lie outside the walls of the duct, we recognize that the momentum fluxes remain the
same (provided the solid structure of the walls remains at rest) and the evaluation of the forces is greatly
simplified. At this stage in the analysis, in order to compute the forces due the pressure in this example and
all similar problems, we perform one manipulation that clarifies the issue. We denote the pressure acting
on the sides of the control volume AB and CD outside the duct by pa (atmospheric pressure) and assume
that this is the same along the length of these exterior surfaces. Since a uniform pressure everywhere on all
sides of the control volume would yield no net contribution to the forces, it follows that the only non-zero
contributions to the force arise from the pressure differences, p1 − pa and p2 − pa, acting on the inlet and
outlet respectively and the force that is required to hold the structure in place (imposed by some structure
not shown in the Figures 1 and 2). Indeed, neglecting any viscous forces acting on the inlet and outlet and
assuming the structure is not moving or accelerating, the components of the force, F ∗, required to hold
the duct in place are then

F ∗
1 = m(−q1 + q2 cos θ) − (p1 − pa)A1 + (p2 − pa)A2 cos θ (Beb5)

and the force, F ∗
2 , perpendicular to q1 but in the plane of q2 is

F ∗
2 = m(q2 sin θ) + (p2 − pa)A2 sin θ (Beb6)

Thus the forces can be computed given the input and output quantities, m, q1 q2, (p1 − pa), (p2 − pa) as
well as the geometric quantities. Of course, those flow quantities will also be related through continuity
and by other relations such as Bernoulli’s equation. Several worked examples are featured on companion
pages.


