
An Internet Book on Fluid Dynamics

Speed of Sound

The next step in our treatment of compressible flows is to develop relations for and understanding of
the speed of sound in a compressible fluid. Sound consists of small amplitude pressure waves propagating
through the fluid and, in most of the analysis which follows we will retain only the mathematical terms that
are linear in the pressure perturbations while neglecting all terms that are quadratic or higher order in those
perturbations. We begin with the following thought experiment. Consider a rigid tube of cross-sectional
area, A, that contains a piston that is initially at rest. The tube is filled with gas at rest with pressure, p,
temperature, T , and density, ρ, but at time t = 0 it is suddenly given a small velocity, Δu, directed into
the gas as sketched in Figure 1. This generates a wave that travels down the pipe with velocity, V , and

Figure 1: Tube with piston set in motion at t = 0, with small velocity, Δu.

leaves behind it gas that now has a velocity, Δu, and increased pressure, p + Δp, temperature, T + ΔT ,
and density, ρ + Δρ. We seek to determine the wave velocity, V , by applying the basic conservation laws

Figure 2: Flow with wave at rest.

that apply to the gas flow. To do so we examine the flow in a frame fixed in the wave as sketched in Figure
2 by applying a Galilean transformation to the flow in Figure 1. Conservation of mass across the wave
then requires that

A(ρ + Δρ)(Δu− V ) = −ρV A (Bod1)

so that

Δu =
V Δρ

(ρ + Δρ)
(Bod2)

In addition, applying the momentum equation to the wave yields

AΔp = AρV 2 − A(ρ + Δρ)(Δu− V )2 (Bod3)

that, using the continuity result (Bod2), leads to

V 2 =
Δp

Δρ

{
1 +

Δρ

ρ

}
(Bod4)



The speed of sound is defined as the speed of the wave for very small perturbations or

V → c when Δu → 0 (and so Δp, ΔT, Δρ → 0) (Bod5)

and therefore

c2 =
dp

dρ
(Bod6)

This result holds for any substance whether solid, liquid or gas and, at various points throughout this
book we will use it for many different substances. However, there is one issue with it. As described in
the thermodynamic preliminaries, the state of a substance is defined by any two thermodynamic variables.
Consequently the left hand side of the relation (Bod6) is incompletely defined; it is necessary to specify the
thermodynamic quantity that is being held fixed as the derivative dp/dρ is being determined. The most
common additional assumption is that the gas undergoes an adiabatic change as it passes through the
wave and this leads to the adiabatic speed of sound, cA, which is the speed that will be used throughout
this book unless otherwise specified. However, there are circumstances in which the isothermal speed of
sound, cT , is relevant.

In most of the sections which follow we will employ the perfect gas law. The isentropic relations for a
perfect gas lead to the following expressions for the isothermal and adiabatic (or isentropic) speeds of
sound:

• Isothermal Speed of Sound, cT = (RT )
1
2

• Adiabatic Speed of Sound, cA = (γRT )
1
2

We note that in air cA is 18.3% larger than cT .

It is appropriate to detail some examples of the magnitude of the speed of sound. In air with γ = 1.4 and
R = 280 m2/s2 Ko, the adiabatic speed of sound at a temperature of T = 293oK is 339m/s. In terms
familiar to airline passengers this is 1220kph or 758mph though at higher altitudes where the temperature
is less, c is significantly smaller. In a liquid whose compressibility is usually quoted as the adiabatic bulk
modulus (see section (Abc)) denoted by κ and defined by

κ =
ρ

{dρ/dp}A

(Bod7)

it follows that
cA = {κ/ρ} 1

2 (Bod8)

For example, in water with an adiabatic bulk modulus of κ = 2.24 × 109 kg/ms2 and a density ρ =
1000 kg/m3, the adiabatic speed of sound is cA = 1500 m/s (section (Abc)), very much greater than the
speed of sound in air at normal temperatures.

Before leaving this section it is valuable to observe how the speed of the wave differs from the speed of
sound when the amplitude of the wave is not so small (the wave is no longer a sound wave). The result in
equation (Bod4) can be approximated by

V 2 ≈ c2

{
1 +

Δρ

ρ

}
(Bod9)

and so the speed of the wave is greater than c when Δρ, Δp, and ΔT are positive (they all either increase
together or decrease together). Such a wave is called a compression wave and, as we will see later, leads
to a shock wave. It follows that the speed of a shock wave is greater than c. In contrast, the speed of
the wave is less than c when Δρ, Δp, and ΔT are negative. Such a wave is called an expansion wave or



rarefaction wave and travels at a speed less than the speed of sound. In sections that follow we will explore
the consequences of these results.

Finally, we note that the Mach number, M , in any flow with velocity, u, is defined as M = u/c. Commonly
we will refer to the Mach number, M = U/c, based on the reference velocity for the flow, U , which is often
the free stream velocity ahead of an object or the velocity, for example, of the tip of a compressor blade.
But there will also be the need to refer to a local Mach number based on the velocity and temperature at
a particular location in the flow.

When M < 1 at some point in a flow the conditions are termed subsonic while if M = 1 they are termed
sonic and if M > 1 they are called supersonic. Flows in which M < 1 are referred to as subsonic flows
while those in which M > 1 are called supersonic flows. There are, of course some flows, where part of the
flow is subsonic and other parts are supersonic; such flows are termed transonic. The adjective hypersonic
is normally used for very high speed flows in which the Mach number is greater than about 5.


