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Choked Flow

Continuing the discussion at the end of the preceding section (Boe), we investigate what happens in
subsonic isentropic nozzle flow when the Mach number reaches unity. The general scenario we will consider
is a duct that contains a nozzle that ends in a throat that is, in turn, followed by a diffuser as we have
depicted in Figure 1. The flow prior to the nozzle will be assumed to be initially subsonic and may or may
not have originated in a reservoir though this is not essential to the discussion. Within the converging

Figure 1: Schematic of general converging/diverging nozzle.

nozzle of Figure 1, the velocity and Mach Number will increase as the cross-sectional area decreases and
the pressure, density and temperature will decrease as depicted in Figure 2. So what happens if and when
the Mach number reaches unity? To investigate this further we return to the basic governing equations

Figure 2: Variations of flow properties in a nozzle and a diffuser.

(Boe1) to (Boe5). By differentiating these equations to obtain the relations between the small changes,
dA, du, dM , dp, dT and dρ that will occur in a steady, isentropic duct flow and then eliminating dM , dp,
dT and dρ, the following relation between dA and du can be obtained:
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and from this we can draw the following conclusion. At a throat where dA = 0

1. Either du = 0 and M �= 1 so, as long as it remains isentropic, the flow will be subsonic throughout
the converging/diverging nozzle because of the trends depicted in Figure 2.



2. Or the Mach number at the throat is unity and du may not be zero. Then there are two sub-options:

• either du is also zero and the flow remains subsonic as it enters the diffuser and therefore remains
subsonic throughout the diffuser, consequently reverting to the first option

• or du > 0 and the flow becomes supersonic in the diffuser and continues supersonic as long as it
remains isentropic. We shall see that, somewhere in the diffuser, it may undergo a non-isentropic
change by passing through a shock wave becoming subsonic again.

Whichever of the last two sub-options occurs the flow through the converging/diverging nozzle is said to
be choked for the following reason.

If the flow becomes sonic (M = 1) in the throat then, at this location,

u∗ = c = (γRT ∗)
1
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and therefore the mass flow rate through the duct, ṁ, is given by

ṁ = ρ∗A∗u∗ = ρ∗A∗(γRT ∗)
1
2 (Bof3)

and substituting for ρ∗ and T ∗ from equations (Boe8) this yields
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which, for air with γ = 1.4 becomes,
ṁ

A∗ = 0.685 {p0ρ0}
1
2 (Bof5)

In other words the mass flow rate through the duct per unit area of the throat is fixed by the upstream
reservoir conditions and does not change irrespective of the downstream conditions. Thus the flow is said
to be choked in the sense that it does not matter what the downstream conditions are as long as they are
such that the Mach number in the throat is unity.

Condsider the following simple and common example shown in Figure 3 that illustrates the phenomenon
of choked flow. Gas flows from a reservoir (or source of compressed air) through a nozzle (or even just a

Figure 3: Schematic of a nozzle ejecting to atmosphere.

hole) and out to the atmosphere. For the purposes of the example it is convenient to consider the reservoir
to contain gas at constant pressure, temperature and pressure (p0, T0 and ρ0) and to gradually reduce the
atmospheric pressure, pA, from p0 (at which there would be no flow). The pressure in the throat will be
equal to pA and for small reductions (small p0 − pA) at which the entire is subsonic the flow out would be

small and, if M � 1 the velocity in the throat and the mass flow rate would be proportional to (p0 −pA)
1
2 .



However as pA is further reduced the Mach number in the throat will eventually approach M → 1. When it
reaches M = 1 and the pressure in the throat becomes p∗ the flow rate will be given by equation (Bof5) and
the flow rate cannot increase further. No matter how much the pressure pA is reduced the throat pressure
will remain at p∗ and the flow rate will remain at the value given by equation (Bof5) which depends only
on the reservoir pressure and density. The flow is choked in that it does not depend on the pressure pA.
The way that the flow downstream of the throat adjusts from p∗ in the throat to the external pressure pA

involves complex three-dimensional structures in the flow that will be described in later sections. Finally,
we note that this phenomenon of choked flow is often used to control and measure gas flows rates.

By way of a practical example we note from section (Boe) that for γ = 1.4 (for air) p∗/p0 = 0.528 and
therefore a compressed air tank (or an automobile tire) leaking to atmosphere through a hole would exhibit
choked flow if the air in the tank had a pressure greater than 1.89atm (or about 27.8psi). As a second
example almost any flow through a leak in a pressurized spacecraft or spacesuit would be choked.


